М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Donyakotova
Donyakotova
09.03.2021 08:42 •  Математика

Игральную кость подбрасывают дважды. Результат эксперимента- число выпавших очков. Рассмотрим события: M- сумма очков не менее 5; N-сумма очков, выпавших, не более 4; K-сумма очков делится на 5. Которые по данным событий совместимы ,а какие нет? Описать события : M ∩ N, N ∩ K, M ∪ N, M ∪ K, M ∪ N ∪ K, M ∩ N ∩ K, N⁻, K⁻.

👇
Ответ:
Давайте рассмотрим каждое событие по очереди и определим их совместимость.

Событие M - сумма очков не менее 5. Это событие произойдет, если выпадут следующие комбинации: (1, 5), (2, 4), (3, 3), (4, 2), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6).
Поэтому событие M может произойти в 16 случаях.

Событие N - сумма очков, выпавших, не более 4. Это событие произойдет, если выпадут следующие комбинации: (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1).
Поэтому событие N может произойти в 10 случаях.

Событие K - сумма очков делится на 5. Это событие произойдет, если выпадут следующие комбинации: (1, 4), (2, 3), (3, 2), (4, 1), (5, 6), (6, 5).
Поэтому событие K может произойти в 6 случаях.

Теперь рассмотрим комбинации событий:

1. M ∩ N - событие, когда сумма очков не менее 5 и не более 4. Таких комбинаций нет, поскольку события M и N взаимоисключающие. (M ∩ N = пустое множество)

2. N ∩ K - событие, когда сумма очков, выпавших, не более 4 и сумма очков делится на 5. Таких комбинаций нет, поскольку события N и K взаимоисключающие. (N ∩ K = пустое множество)

3. M ∪ N - событие, когда сумма очков не менее 5 или сумма очков, выпавших, не более 4.
Для события M ∪ N нужно объединить все комбинации из событий M и N, исключив повторяющиеся элементы.
Получим следующие комбинации: (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1), (5, 1), (6, 1), (5, 2), (5, 3), (5, 4), (5, 5), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6).
Таким образом, событие M ∪ N может произойти в 21 случае.

4. M ∪ K - событие, когда сумма очков не менее 5 или сумма очков делится на 5.
Для события M ∪ K нужно объединить все комбинации из событий M и K, исключив повторяющиеся элементы.
Получим следующие комбинации: (1, 5), (2, 4), (3, 3), (4, 2), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6).
Таким образом, событие M ∪ K может произойти в 16 случаях.

5. M ∪ N ∪ K - событие, когда сумма очков не менее 5 или сумма очков, выпавших, не более 4 или сумма очков делится на 5.
Для события M ∪ N ∪ K нужно объединить все комбинации из событий M, N и K, исключив повторяющиеся элементы.
Получим следующие комбинации: (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1), (1, 5), (2, 4), (3, 3), (4, 2), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6).
Таким образом, событие M ∪ N ∪ K может произойти в 26 случаях.

6. M ∩ N ∩ K - событие, когда сумма очков не менее 5 и не более 4 и сумма очков делится на 5.
Таких комбинаций нет, поскольку события M, N и K взаимоисключающие. (M ∩ N ∩ K = пустое множество)

7. N⁻ - событие, которое является дополнением к событию N, то есть все остальные комбинации, которые не входят в N.
Комбинации, не входящие в N: (3, 3), (3, 4), (4, 3), (4, 4), (5, 5), (5, 6), (6, 3), (6, 4), (6, 5), (6, 6).
Таким образом, событие N⁻ может произойти в 10 случаях.

8. K⁻ - событие, которое является дополнением к событию K, то есть все остальные комбинации, которые не входят в K.
Комбинации, не входящие в K: (1, 1), (1, 2), (1, 3), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4), (5, 2), (5, 3), (5, 4), (5, 5), (6, 2), (6, 3), (6, 4), (6, 5).
Таким образом, событие K⁻ может произойти в 24 случаях.

Таким образом, совместимые события: M ∪ N, M ∪ K, M ∪ N ∪ K, N⁻, K⁻.
Несовместимые события: M ∩ N, N ∩ K, M ∩ N ∩ K.
4,4(24 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ