Пошаговое объяснение:
Например:
log3 (log(9/16) (x^2 - 4x + 3) ) = 0
Во-первых, область определения:
{ x^2 - 4x + 3 > 0
{ log(9/16) (x^2 - 4x + 3) > 0
Решаем:
{ (x-1)(x-3) > 0
{ x^2 - 4x + 3 < 1.
Тут надо пояснение. Так как 9/16 < 1, то функция y = log(9/16) x - убывающая.
Поэтому, если логарифм > 0, то выражение под логарифмом < 1.
{ x € (-oo; 1) U (3; +oo)
{ x^2 - 4x + 2 < 0; x € (2-√2; 2+√2)
2-√2 ≈ 0,586 < 1; 2+√2 ≈ 3,414 > 3
Область определения: (2-√2; 1) U (3; 2+√2)
Теперь решаем само уравнение.
Логарифм log(a) 1 = 0 при любом основании а, если а > 0 и а ≠ 1.
Значит:
log(9/16) (x^2 - 4x + 3) = 1
x^2 - 4x + 3 = 9/16
16x^2 - 64x + 48 - 9 = 0
16x^2 - 64x + 39 = 0
D/4 = 32^2 - 16*39 = 1024 - 624 = 400 = 20^2
x1 = (32 - 20)/16 = 12/16 = 0,75 € (2-√2; 1)
x2 = (32 + 20)/16 = 52/16 = 3,25 € (3; 2+√2)
ответ: x1 = 0,75; x2 = 3,25
Точно также решаются остальные.
ответ:12
Пошаговое объяснение:
Первый путь равен произведению скорости на время)
Тогда, если установленное время прибытия (без опозданий или раннего прихода) принять за «х», то будет верным равенство:
(х + 45) * 3 = (x — 15) * 4
где
(х + 45) — первый случай, когда пешеход опоздал на 45 мин
(х — 15) — второй случай, когда пешеход пришёл раньше на 15 мин
Получаем:
(х + 45) * 3 = (x — 15) * 4
3х + 135 = 4х — 60
135 + 60 = 4х — 3х
195 = х
Итак, время которое отводилось обоим пешеходам составило 195 минут.
Проверяем для первого пешехода:
195 мин + 45 мин = 240 мин = 4 час — потратил времени первый пешеход
3 км/ч * 4 часа = 12 км — расстояние от пункта А до пункта Б
Проверяем для второго пешехода:
195 мин — 15 мин = 180 мин = 3 час — потратил времени второй пешеход
4 км/ч * 3 часа = 12 км — расстояние от пункта А до пункта Б
ответ: 12 км
(0; 4)
Пошаговое объяснение:
Если график функции f пересекает ось абсцисс в точках А,В,С,...., то координаты этих точек удовлетворяют уравнению f = 0. Решим это уравнение
Получили точку, у = 0, х = 4. ответ - (0; 4)