1. Вычислим длину прямоугольника, если она в 2 раза короче ширины:
80 / 2 = 40 м.
2. Теперь можем рассчитать площадь и периметр. Площадь будет равна произведению длины и ширины, а периметр - удвоенной сумме длины и ширины:
Площадь = 40 * 80 = 3200 м2.
Периметр = 2 * (40 + 80) = 2 * 120 = 240 м.
3. Выразим полученную площадь в арах:
3200 м2 = 32 ар.
4. Теперь определим, чему равна сторона квадрата, если периметр равен 240 м, поделив его на 4:
240 / 4 = 60 м.
5. Наконец, вычислим площадь квадрата со стороной 60 м:
60 * 60 = 3600 м2.
6. Выразим полученную площадь в арах:
3600 м2 = 36 ар.
ответ: прямоугольник имеет площадь 32 ара, а периметр 240 м, а квадрат имеет площадь 36 ар.
Обозначим искомые числа за (х) и (у), тогда сумма этих чисел равна:
х+у=120
40% первого числа составляет:
40%*х :100%=0,4*х=0,4х
30% второго числа составляет:
30%*у :100%=0,3*у=0,3у
Сумма этих чисел равна:
0,4х+0,3у=41
Решим два уравнения, которые представляют систему уравнений:
х+у=120
0,4х+0,3у=41
Из первого уравнения найдём значение (х)
х=120-у подставим значение (х) во второе уравнение:
0,4*(120-у) +0,3у=41
48 -0,4у +0,3у=41
-0,1у=41-48
-0,1у=-7
у= -7 : -0,1
у=70 - второе число
х=120-70=50 - первое число
ответ: Искомые числа 50 и 70