Рисуем треугольник. Катеты 8 и 15. находим по теореме Пифагора гипотенузу для выявления радиуса вписанной окружности = 8^2 + 15^2 = 289 = 17^2. r = (a +b - c)/2 = 3.
Центр вписанной окружности соединяем с вершинами, а также проводим перпендикуляры к катетам и гипотенузе. Потом видно, что два треугольника равные по общей стороне и прямому углу. Также замечаем квадрату прямого угла треугольника, а его стороны равны радиусу вписанной окружности = 3. То есть, одна сторона уже известна - 5.
На основании определения функции каждому значению аргумента х из области определения R ( все действительные числа ) соответствует единственное значение функции y , равное x 2.
Например, при х = 3 значение функции y = 3 2 = 9 , а при х = –2 значение функции y = (–2) 2 = 4 .
Изобрази график функции y = x 2 . Для этого присвой аргументу х несколько значений, вычисли соответствующие значения функции и внеси их в таблицу.
Если: x = –3 , x = –2 , x = –1 , x = 0 , x = 1 , x = 2 , x = 3 ,
то: y = 9 , y = 4 , y = 1 , y = 0 , y = 1 , y = 4 , y = 9 .
Нанеси точки с вычисленными координатами (x ; y) на плоскость и соедини их плавной непрерывной кривой. Эта кривая, называющаяся параболой, и есть график исследуемой тобой функции.
На графике видно, что ось OY делит параболу на симметричные левую и правую части (ветви параболы), в точке с координатами (0; 0) (вершине параболы) значение функции x 2 — наименьшее. Наибольшего значения функция не имеет. Вершина параболы — это точка пересечения графика с осью симметрии OY .
На участке графика при x ∈ (– ∞; 0 ] функция убывает, а при x ∈ [ 0; + ∞) возрастает.
Функция y = x 2 является частным случаем квадратичной функции.
Рассмотрим ещё несколько её вариантов. Например, y = – x 2 .
Графиком функции y = – x 2 также является парабола, но её ветви направлены вниз.
График функции y = x 2 + 3 — такая же парабола, но её вершина находится в точке с координатами (0; 3) .
Центр вписанной окружности соединяем с вершинами, а также проводим перпендикуляры к катетам и гипотенузе. Потом видно, что два треугольника равные по общей стороне и прямому углу. Также замечаем квадрату прямого угла треугольника, а его стороны равны радиусу вписанной окружности = 3. То есть, одна сторона уже известна - 5.
Отнимаем у гипотенузы 17 - 5 = 12.
ответ: 5 и 12