Т.к. tqA =СВ/АС=4/3, то СВ-4 части, АС-5ч, значит( по тороеме Пиф. АВ=5 ч.
Т.к высота, проведенная из вершины прямого угла делит треугольник на два подобных, икаждый их которых подобен исходному, то треугольник СВР подобен треугольнику АВС. , то отношение сходственных сторон и будет являться коеффициетом пропорциональности, т.е. СВ/АВ =4/5. Далее – линейные размеры подобных треугольников – ( медианы. Биссектрисы. Высоты и т.п., включая радиусы вписанных и описанных окружностей) относятся с тем же коэффициентом пропорциональности, то радиус вписанной в треугольник ВСР окружности. относится к радиусу вписанной в треугольник АВС окружности с тем же коэффициентом 4/5. Те 8/х=4/5 отсюда х=10
Проведем высоту трапеции Н через точку К. Она точкой К делится пополам, так как эта точка лежит на средней линии трапеции. Таким образом, высоты обоих указанных треугольников равны Н/2.
Площадь треугольника равна половине произведения основания на высоту. Запишем это для каждого треугольника.
S(BKC) = 1/2*BC*H/2 S(AKD) = 1/2*AD*H/2
Площадь же трапеции равна полусумме оснований, умноженной на высоту. Запишем и это:
Т.к. tqA =СВ/АС=4/3, то СВ-4 части, АС-5ч, значит( по тороеме Пиф. АВ=5 ч.
Т.к высота, проведенная из вершины прямого угла делит треугольник на два подобных, икаждый их которых подобен исходному, то треугольник СВР подобен треугольнику АВС. , то отношение сходственных сторон и будет являться коеффициетом пропорциональности, т.е. СВ/АВ =4/5. Далее – линейные размеры подобных треугольников – ( медианы. Биссектрисы. Высоты и т.п., включая радиусы вписанных и описанных окружностей) относятся с тем же коэффициентом пропорциональности, то радиус вписанной в треугольник ВСР окружности. относится к радиусу вписанной в треугольник АВС окружности с тем же коэффициентом 4/5. Те 8/х=4/5 отсюда х=10
ответ 10
Тк