Задача с квадратным уравнением. Имеем условия: 1. q = 120 - 10p 2. r = pq >= 360 (больше или равно 360)
Подставляя первое во второе, получаем:
pq = p(120 - 10p) = -10p^2 + 120p >=360 Разделим последнее на -10 (знак поменяет направление): p^2 - 12p +36 <= 0 Получается, это формула параболы. Решения находятся в той части параболы, которая находится на оси Х или ниже (потому что меньше или равно нуля) Дискриминант = в-квадрат минус 4 ас = 12*12 - 4*36 = 0 Значит, решение единственное.
По условию задачи чертим рисунок, получаем трапецию АВСД, в которой АВ - расст м/д центрами окружностей, СД - длина общей касательной = 12 см, ВС - радиус =1 см, АД - радиус =6 см. Найти надо АВ-?
Решение: 1) АВСД - трапеция по определению, так как по условию АД и ВС перпендикулярны СД (как радиусы к общей касательной), => AD||BC . 2) Опустим высоту ВН, Н∈АД и ВН=СД=12 см, => тр АВН (уг Н=90*) - прямоугольный, АН = АД - ВН = АД-ВС; АН = 6-1 = 5 см => по т Пифагора АВ²=АН²+ВН² => АВ² = 12²+5², АВ² = 144+25 = 169; АВ = 13 см
ответ: Расстояние м/д центрами данных окружностей равно 13 см
Имеем условия:
1. q = 120 - 10p
2. r = pq >= 360 (больше или равно 360)
Подставляя первое во второе, получаем:
pq = p(120 - 10p) = -10p^2 + 120p >=360
Разделим последнее на -10 (знак поменяет направление):
p^2 - 12p +36 <= 0
Получается, это формула параболы.
Решения находятся в той части параболы, которая находится на оси Х или ниже (потому что меньше или равно нуля)
Дискриминант = в-квадрат минус 4 ас = 12*12 - 4*36 = 0
Значит, решение единственное.
p = -b/2a = 12/2 = 6. Это ответ
Проверка: q = 120 - 10*6 = 60
r = pq = 6 * 60 = 360