М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
koool3
koool3
02.02.2022 08:03 •  Математика

Последовательность аn задана формулой аn=34/n+1

👇
Открыть все ответы
Ответ:
samsungj7
samsungj7
02.02.2022

А) 20

Пошаговое объяснение:

Обозначим количество решений Амира через х. По условию:

1) Амир решил в в 1,5 больше  задач, чем Азиз, тогда Азиз решил в 1,5 меньше задач чем Амир, то есть х:1,5;

2) Малика решила на 16 задач больше, чем Амир, то есть х+16;

3) Все они вместе решили 96 задач, то есть

х + х:1,5 + (х+16) = 96.

Чтобы избавится от операций с дробями, умножаем обе части последнего уравнения на 3 и решаем:

3•х + 2·х + 3·(х+16) = 3·96

5•х + 3·х + 48 = 288

8•х = 288 - 48

8•х = 240

х = 240 : 8 = 30.

Тогда Азиз решил х : 1,5 = 30 : 1,5 = 20 задач.

4,8(54 оценок)
Ответ:
kolobok2000
kolobok2000
02.02.2022
Производная функции f(x)=4x^3-6x^2 равна:
f '(x) = 12x² - 12x.

Исследовать функцию f (x) = 4x³–6x² и построить ее график.

1. Область определения функции - вся числовая ось.

2. Функция f (x) = 4x³–6x² непрерывна на всей области определения. Точек разрыва нет.

3. Четность, нечетность, периодичность:

График четной функции симметричен относительно оси ОУ, а нечетной — относительно начала координат О.

 f(–x) = 4(–x)³–6(–x)² = –(4x³+6x²) ≠ –f(x),

f(–x) = 4(–x)³3–6(–x)² = –(4x³+6x²) ≠ –f(x)

Функция не является ни четной, ни нечетной. Функция непериодическая.

4. Точки пересечения с осями координат:

Ox: y=0, 4x³–6x²=0, 2x²(2x–3)=0 ⇒ x=0, x=3/2. Значит (0;3/2),  - точки пересечения с осью Ox.

 Oy: x = 0 ⇒ y = 0. Значит (0;0) - точка пересечения с осью Oy.

5. Промежутки монотонности и точки экстремума:

y'=0 ⇒ 12x²–12x =0 ⇒ 12x(x–1) = 0 ⇒ x = 0, x = 1 - критические точки.

Если производная положительна - функция возрастает, если производная отрицательна - функция убывает:

отрезок  -∞ < x < 0   функция возрастает,

отрезок 0 < x < 3/2   функция убывает,

отрезок 3/2 < X < ∞   функция возрастает.

7*. Вычисление второй производной: у =4x³–6x², 

f '(x) = 12x² - 12x. f ''(x) = 24x - 12.

y''=0, 24x–12= 0, x = 12/24 = 1/2.

 8*. Промежутки выпуклости и точки перегиба:

отрезок  -∞ < x < 1/2  график функции выпуклый вверх,

точка перегиба х = 1/2,

отрезок 1/2< x < ∞  график функции выпуклый вниз.

9. Найдем значение функции в дополнительной точке: f(1/2) = 4*(1/2)³– 6(1/2)² = 4/8 -6/4 = (4-12) / 8 = -8/8 =  –1.

10. Искомый график функции в приложении

4,5(79 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ