Пусть C — вершина данного угла. При инверсии с центром в точке A прямая CB перейдет в окружность S, а окружности S1 и S2 — в окружность S1* с центром O1, касающуюся S в точке B*, и прямую l, параллельную C*A, касающуюся S1* в точке X (рис.). Проведем в окружности S радиус OD $ \perp$ C*A. Точки O, B* и O1 лежат на одной прямой, a OD| O1X. Поэтому $ \angle$OB*D = 90o - $ \angle$DOB*/2 = 90o - ($ \angle$XO1B*/2) = $ \angle$O1B*X, следовательно, точка X лежит на прямой DB*. Еще раз применив инверсию, получим, что искомое множество точек касания — это дуга AB окружности, проходящей через точки A, B и D*.
817 = 800 +10 +7
3029 = 3000 + 20+ 9
53 082 = 50 000+3000+80+2
706 480 = 700 000+6000 + 400+80