С детства нам известно,что, не зная математики, мы не сможем провести какие-либо расчеты. Было бы невозможно купить что-либо в магазине, поехать на общественном транспорте и так далее. А те,кто знает математику легко бы обвел незнающего вокруг пальца. Но естественно она дает нам не только это.
Ломоносов писал: "Математика уже затем нужна, что она ум в порядок приводит". Более точно выразиться нельзя. Она развивает логику к решению поставленных задач и проблем к анализу и сопоставлению. Например, у человека есть выбор пойти пешком или подождать автобус. Чтобы решить, он начинает анализировать, сравнивать и рассматривать все возможные варианты дальнейшего развития событий. Мы делаем это все не задумываясь, но смог ли бы это сделать человек, который никогда не изучал математику? Возможно да, но пока он думал бы, то уже успел бы пешком туда и обратно сходить.
Поэтому принебрегать математикой нельзя: она необходима в жизнипостоянно
2 - 2sin^2 x - 5sin x + 1 = 0
-2sin^2 x - 5sin x + 3 = 0
2sin^2 x + 5sin x - 3 = 0
Квадратное уравнение относительно sin x
D = 5^2 - 4*2(-3) = 25 + 24 = 49 = 7^2
sin x = (-5 - 7)/4 = -12/4 = -3
Решений нет
sin x = (-5 + 7)/4 = 1/2
x = (-1)^k*pi/6 + pi*k
2) f(x) = (2x^3 - 1) / (2x^4 - 8)
f ' (x) = [6x^2*(2x^4 - 8) - (2x^3 - 1)*8x^3] / (2x^4 - 8)^2 =
= (12x^6 - 48x^2 - 16x^6 + 8x^3) / (2x^4 - 8)^2 = (-4x^6 + 8x^3 - 48x^2) / (2x^4 - 8)^2 = 0
Если дробь равна 0, то числитель равен 0, а знаменатель нет.
-4x^6 + 8x^3 - 48x^2 = 0
Делим всё на -4
x^6 - 2x^3 + 12x^2 = 0
а) x1 = x2 = 0; f(0) = (-1)/(-8) = 1/8
Но производная отрицательна и при x < 0, и при x > 0.
Поэтому x = 0 - критическая точка, но не экстремум, а точка перегиба.
Потому что в ней f '' (x) = 0
б) x^4 - 2x + 12 = 0
Это уравнение действительных корней не имеет
в) У функции ещё есть точки разрыва
2x^4 - 8 = 0
x^4 - 4 = 0
x1 = -√2
x2 = √2
Но производная все равно отрицательна при всех x, кроме точек разрыва.
ответ: функция убывает на всей области определения.
3) (2/3)^(2x+3) <= (9/2)^(x-2)
(2/3)^(2x) * (2/3)^3 <= (9/2)^x * (2/9)^2
(4/9)^x * 8/27 <= (9/2)^x * 4/81
(4/9 * 2/9)^x <= (4/81) * (27/8)
(8/81)^x <= 1/6
Основание 0 < 8/81 < 1, поэтому график убывает.
При переходе от степеней к показателям знак неравенства меняется
5)
6) f(x) = x^2 - 2x; x0 = 3
f(x0) = 3^2 - 2*3 = 9 - 6 = 3
f ' (x) = 2x - 2
f ' (x0) = 2*3 - 2 = 4
Уравнение касательной
y = f(x0) + f ' (x0)*(x - x0) = 3 + 4(x - 3) = 3 + 4x - 12
y = 4x - 9