Будем считать, что x≥y. Заметим, что x²-xy+y²≥xy для любых натуральных x,y. x+y=x²-xy+y²≥xy ⇒ x+y≥xy. Так как x+y≤2x, 2x≥xy, откуда y≤2. То есть, возможны всего два случая: y=1, y=2.
Подставив y=1 в исходное уравнение, имеем x+1=x²-x+1, откуда x²-2x=0, x=0, x=2, значит, пара (2;1) решение. Заметим, что пара (1;2) тогда тоже будет решением - в исходном уравнении значения x и y можно поменять местами, не нарушая равенство (иначе пришлось бы рассматривать два случая - x≥y и x<y, здесь же мы можем утверждать, что если (a,b) - решение, то и (b,a) - решение).
Подставив y=2, имеем x+2=x²-2x+4 ⇒ x²-3x+2=0 ⇒ (x-1)(x-2)=0. Решение x=1, y=2 уже было учтено ранее, кроме этого, есть ещё одно решение: x=2, y=2. Других вариантов нет.
В третьей урне будет 2 шара. Введем гипотезы: H1 - в 3 урне 2 белых шара, H2 - в 3 урне 2 черных шара, H3 - в 3 урне черный и белый шары. Посчитаем вероятности гипотез: p(H1) = (2/5)*(4/6) = 4/15 p(H2) = (3/5)*(2/6) = 1/5 p(H3) = (2/5)*(2/6)+(3/5)*(4/6) = 8/15 Сумма вероятностей гипотез должна равнять 1: 4/15+1/5+8/15 = 1 Событие A заключается в том что из 3 урны достали белый шар. Посчитаем условные вероятности p(A|H1) = 1, из двух белых выбирают белый p(A|H2) = 0, из двух черных выбирает белый p(A|H3) = 1/2, из черного и белого выбирают белый Полная вероятность события A: p(A) = p(H1)*p(A|H1) + p(H2)*p(A|H2) + p(H3)*p(A|H3) = (4/15)*1 + (1/5)*0 + (8/15)*(1/2) = 8/15 ответ: 8/15
решение на фотографии