Вася поделил натуральное двузначное число на 8 с остатком ,а Петя определял тоже число на 5 и получил остаток в два раза больше чем у Васи. Найдите сумму всех возможных чисел которые могли делить Вася и Петя
Остаток от деления на число 8 может быть число 0,1,2,3,4,5,6,7
Остаток от деления на число 5 может быть число 0,1,2,3,4
Остаток от деления на число 3 может быть число 0,1,2
Так как 13=7+4+2 - равен сумме значений максимальных соответствующих остатков, то при деления искомого числа на 8 остаток 7, на 5 остаток 4, на 3 остаток 2
Далее методом перебора:
999 при делении на 8 дает остаток 7, при делении на 5 остаток 4, но делится нацело на 3 - не подходит
999-8=991 при делении на 8 дает остаток 7 , при делении на 5 остаток 1 - не подходит
991-8=983 при делении на 5 остаток 3 - не подходит
983-8=975 делится нацело на 5 - не подходит
975-8=967 при делении на 5 остаток 2 - не подходит
967-8=959 при делении на 5 остаток 4, при делении на 3 остаток 2 - оно искомое
Надо построить треугольник, площадь которого равна площади трапеции. Пусть трапеция ABCD, AD II BC. Из С проводим прямую II диагонали BD до пересечения с продолжением AD. Пусть это точка Е. Ясно, что DBCE - параллелограмм. Треугольник ACE имеет ту же высоту, что и трапеция - это расстояние от С до AD (обозначим эту высоту СН), а АЕ = AD + BC. Очевидно, что площадь АСЕ равна площади ABCD ( = СН*(AD + BC)/2). Стороны треугольника АСЕ это AC = 15; СЕ = BD = 20; AE = AD + BC = 2*12,5 = 25. Не трудно убедится, что это треугольник, подобный "египетскому" - со сторонами (3,4,5). То есть это прямоугольный треугольник, и его площадь равна 15*20 / 2 = 150. ответ - площадь трапеции 150.
Первый ряд точно такой? Не допустили ошибку при написании? Если нет, то в первом ряду 6/5, во втором ряду 2/4, в третьем ряду 2/1. Здесь, чтобы понять какая доминошка должна быть последней в каждом ряду, нужно внимательно посмотреть на цифры (убрать между ними разделяющую черту). Это прогрессия. В первом ряду получаются цифры: 11, 32, 44 ( 11+21=32, 32+12=44, 44+21=65), сначала прибавляем 21, потом 12, потом опять 21 и т.д. Во втором ряду получаются цифры: 12, 16, 20 ( 12+4=16, 16+4=20, 20+4=24) , здесь прибавляем по 4. В третьем ряду получаются цифры: 66, 51, 36 (66-15=51, 51-15=36, 36-15=21), здесь вычитаем по 15.
Остаток от деления на число 8 может быть число 0,1,2,3,4,5,6,7
Остаток от деления на число 5 может быть число 0,1,2,3,4
Остаток от деления на число 3 может быть число 0,1,2
Так как 13=7+4+2 - равен сумме значений максимальных соответствующих остатков, то при деления искомого числа на 8 остаток 7, на 5 остаток 4, на 3 остаток 2
Далее методом перебора:
999 при делении на 8 дает остаток 7, при делении на 5 остаток 4, но делится нацело на 3 - не подходит
999-8=991 при делении на 8 дает остаток 7 , при делении на 5 остаток 1 - не подходит
991-8=983 при делении на 5 остаток 3 - не подходит
983-8=975 делится нацело на 5 - не подходит
975-8=967 при делении на 5 остаток 2 - не подходит
967-8=959 при делении на 5 остаток 4, при делении на 3 остаток 2 - оно искомое
959=8*119+7
959=5*191+4
959=3*319+2