Было 1/2 и 1/3, стало: 3/6 и 2/6 (общий знаменатель 6. чтобы 1/2 стала со знаменателем 6 надо числитель и знаменатель умножить на 3. получается из 1/2 ---3/6 т.есть и сверху и снизу в три раза больше 1/3 чтобы привести к такомуже знаменателю 6 надо умножить на 2. получаем из 1/32/6) 5/10 и 2/10 7/14 и 2/14 9/18 и 2/18 3/6 и 4/6 5/10 и 6/10 7/14 и 12/14 9/18 и 14/18 8/56 и 7/56 24/56 и 35/56 11/110 и 10/110 33/110 и 100/110 13/130 и 10/130 13/130 и 20/130 42/140 и 40/140 117/130 и 120/130 (наверно в этом задании опечатка и должно быть 12/13
где D - это греческая буква "Дельта"
Пошаговое объяснение:
Вычисляете определитель системы D состоящий из коэффициентов при неизвестных:
3 -2 -5
5 -2 -3= (3*(-2)*1+5*(-5)*1+(-2)*(-3)*1)-((-5)*(-2)*1+3*(-3)*1+5*(-2)*1)=(-25)-(-9)=-16
1 1 1
D = -16
Затем вычисляете определитель D1, который отличается от D тем, что первый столбец заменен на столбец из свободных элементов:
0 -2 -5
0 -2 -3 = (0*(-2)*1+0*(-5)*1+(-2)*(-3)*1)-((-5)*(-2)*1+0*(-3)*1+0*(-2)*1)=(6)-(10)=-4
1 1 1
D1 = -4
Далее вычисляете определитель D2, отличающийся от D тем, что второй столбец заменен на столбец свободных элементов.
3 0 -5
5 0 -3 = (3*0*1+5*(-5)*1+0*(-3)*1)-((-5)*0*1+3*(-3)*1+0*5*1)=(-25)-(-9)=-16
1 1 1
D2 = -16
Далее вычисляете определитель D3, отличающийся от D тем, что третий столбец заменен на столбец свободных элементов.
3 -2 0
5 -2 0 = (3*(-2)*1+5*0*1+(-2)*0*1)-(0*(-2)*1+3*0*1+5*(-2)*1)=(-6)-(-10)=4
1 1 1
D3 = 4
Окончательно:
x = D1/D; y = D2/D; z = D3/D.
x = -4 / -16 = ¼
y = -16 / -16 = 1
z = 4 / -16 = -¼
где D - это греческая буква "Дельта"