1) 1/15 и 1/5 * 3 = 3/15; 1/15 & 3/15
2) 2/3 * 4 = 8/12 и 3/4 * 3 = 9/12; 8/12 & 9/12 ( знаменатели взаимно-простые, поэтому просто перемножили )
3) 1/2 * 7 = 7/14 и 3/7 * 2 = 6/14; 7/14 & 6/14 ( знаменатели взаимно-простые, поэтому просто перемножили )
4) 3/5 * 6 = 18/30 и 5/6 * 5 = 25/30; 18/30 & 25/30 ( знаменатели взаимно-простые, поэтому просто перемножили )
5) 4/15 * 11 = 44/165 и 7/11 * 15 = 105/165; 44/165 & 105/165 ( эти знаменатели тоже взаимно-простые, поэтому просто перемножили )
Пошаговое объяснение:
Я смог
Поскольку
, то треугольники MAN и BAC подобны. Значит MN параллелен BC ⇔ BMNC - трапеция. При этом BN и MC - диагонали. В трапеции отрезок, соединяющий середины оснований, продолжения боковых сторон и точка пересечения диагоналей лежат на одной прямой. Следовательно, AT - медиана треугольника ABC. Заметим, что отношение "расстояний" пройденных точками A и O равно искомому отношению диаметров окружностей, что равно отношению радиусов. Точка T зафиксирована. Спроецируем путь пройденный точкой O на вертикальную ось. Получим длину диаметра окружности. Данный диаметр пропорционален длине отрезка OT. Точка A пройдет весь путь окружности, проекция этого пути равна диаметру описанной окружности. Так как точка O лежит на отрезке AT, то пройденный путь пропорционален диаметру описанной окружности с тем же коэффициентом пропорциональности, что и отношение отрезка OT к соответствующему пути. Получили, что искомое отношение радиусов равно отношению
. Пусть MB = x, AM = 3x; AN = 3y; NC = y; TC = BT; По теореме Менелая:
, Значит
; ответ: 7:1