Решение: Найдём высоту трапеции. Площадь трапеции равна: S=(a+b)*h/2 где а и b- основания трапеции Из этой формулы найдём высоту (h), подставив в её известные нам данные: 144=(7+17)*h/2 144=(24)*h/2 144*2=24*h 288=24h h=288 : 24 h=12 Если мы опустим высоты на нижнее основание трапеции, получим прямоугольник и два равных прямоугольных треугольников, так как трапеция равнобедренная. Нижние катеты прямоугольных треугольников равны по : (17-7) : 2=10:2=5 Теперь нам известны у прямоугольных треугольников два катета: -высота, которая является катетом, равная 12 - второй нижний катет, равный 5 Боковая сторона трапеции является гипотенузой прямоугольного треугольника, которую мы найдём по Теореме Пифагора c²=a²+b² c²=12²+5²=144+25=169 Отсюда: с=√169=13- боковая сторона трапеции
ответ: Боковые стороны данной равнобедренной трапеции равны по 13
У параллелограмма противолежащие углы равны, а соседние - внутренние односторонние при параллельных прямых, в сумме дают 180 градусов. Исходя из этого: один угол - х, другой - (х + 70), в сумме дают 180, х + (х + 70) = 180 2х + 70 = 180 2х = 180 - 70 2х = 110 х = 110 : 2 х = 55 - один угол, 55 + 70 = 125 - другой. ответ 125
наибольший угол у параллелограмма - это тупой. Зная, что соседние углы в сумме дают 180 градусов, а один больше другого на 70, добавим эти 70 градусов к 180, чтобы сделать два равных угла: 180 + 70 = 250. А теперь 250 : 2 = 125. Что и требовалось найти.
Найдём высоту трапеции.
Площадь трапеции равна:
S=(a+b)*h/2 где а и b- основания трапеции
Из этой формулы найдём высоту (h), подставив в её известные нам данные:
144=(7+17)*h/2
144=(24)*h/2
144*2=24*h
288=24h
h=288 : 24
h=12
Если мы опустим высоты на нижнее основание трапеции, получим прямоугольник и два равных прямоугольных треугольников, так как трапеция равнобедренная.
Нижние катеты прямоугольных треугольников равны по :
(17-7) : 2=10:2=5
Теперь нам известны у прямоугольных треугольников два катета:
-высота, которая является катетом, равная 12
- второй нижний катет, равный 5
Боковая сторона трапеции является гипотенузой прямоугольного треугольника, которую мы найдём по Теореме Пифагора
c²=a²+b²
c²=12²+5²=144+25=169
Отсюда: с=√169=13- боковая сторона трапеции
ответ: Боковые стороны данной равнобедренной трапеции равны по 13