ответ:1)
№1
1) Пусть во второй корзине лежало х грибов.
В первой корзине было в 4 раза больше, чем во второй, то есть:
4 * х = 4х грибов.
В первую корзину положили 4 гриба, значит в ней стало:
(4х + 4) грибов.
Во вторую корзину положили 31 гриб, значит в ней стало:
(х + 31) гриб.
Грибов в корзинах стало поровну.
Составим и решим уравнение:
4х + 4 = х + 31,
3х = 27,
х = 9 грибов,
4х = 4 * 9 = 36 грибов.
ответ: в первой корзине было 36 грибов, а во второй 9 грибов.
№2
Решим данную задачу при уравнения.
Пусть первая бригада изготовила х деталей, тогда вторая бригада изготовила (х + 5) деталей, а третья бригада - (х + 5 - 15) деталей. Нам известно, что три бригады рабочих изготовили за смену 100 деталей. Составляем уравнение:
х + х + 5 + х + 5 - 15 = 100;
х + х + х + 10 - 15 = 100;
х + х + х - 5 = 100;
х + х + х = 100 + 5;
х * (1 + 1 + 1) = 105;
х * 3 = 105;
х = 105 : 3;
х = 35 деталей - изготовила первая бригада;
35 + 5 = 40 деталей - изготовила вторая бригада;
35 + 5 - 15 = 25 деталей - изготовила третья бригада.
ответ: 35 деталей; 40 деталей; 25 деталей.
№3
(х-1)(х-3)<0, раскрываем скобочки:
x^2 -3x-1x+3<0, теперь приводим подобные слагаемые:
x^2 -4x+3<0. Теперь необходимо найти нули неравенства, для того, чтобы решить его универсальным методом интервалов. Для этого приравниваем левую часть неравенства к нулю.
x^2 -4x+3=0. Сейчас решаем данное уравнение через дискриминант.
Х1,2=(4+-корень(16-4*1*3)/2)=(4+-2)/2
Х1=3
Х2=1
Теперь используем универсальный метод интервалов. Для этого наносим наши корни на числовую прямую и ищем отрицательный промежуток, подставляя для этого числа с промежутков в уравнение. Получаем:
+ — +
0——о——-о———>х
1 3
Видим, что нужным нам промежуток лежит в интервале от 1 до 3, т.е. <1х<3, а в ответ запишем через знак принадлежности.
ответ: х принадлежит(э в другую сторону) (1;3).
Пошаговое объяснение:
№1
1) Пусть во второй корзине лежало х грибов.
В первой корзине было в 4 раза больше, чем во второй, то есть:
4 * х = 4х грибов.
В первую корзину положили 4 гриба, значит в ней стало:
(4х + 4) грибов.
Во вторую корзину положили 31 гриб, значит в ней стало:
(х + 31) гриб.
Грибов в корзинах стало поровну.
Составим и решим уравнение:
4х + 4 = х + 31,
3х = 27,
х = 9 грибов,
4х = 4 * 9 = 36 грибов.
ответ: в первой корзине было 36 грибов, а во второй 9 грибов.
№2
Решим данную задачу при уравнения.
Пусть первая бригада изготовила х деталей, тогда вторая бригада изготовила (х + 5) деталей, а третья бригада - (х + 5 - 15) деталей. Нам известно, что три бригады рабочих изготовили за смену 100 деталей. Составляем уравнение:
х + х + 5 + х + 5 - 15 = 100;
х + х + х + 10 - 15 = 100;
х + х + х - 5 = 100;
х + х + х = 100 + 5;
х * (1 + 1 + 1) = 105;
х * 3 = 105;
х = 105 : 3;
х = 35 деталей - изготовила первая бригада;
35 + 5 = 40 деталей - изготовила вторая бригада;
35 + 5 - 15 = 25 деталей - изготовила третья бригада.
ответ: 35 деталей; 40 деталей; 25 деталей.
№3
(х-1)(х-3)<0, раскрываем скобочки:
x^2 -3x-1x+3<0, теперь приводим подобные слагаемые:
x^2 -4x+3<0. Теперь необходимо найти нули неравенства, для того, чтобы решить его универсальным методом интервалов. Для этого приравниваем левую часть неравенства к нулю.
x^2 -4x+3=0. Сейчас решаем данное уравнение через дискриминант.
Х1,2=(4+-корень(16-4*1*3)/2)=(4+-2)/2
Х1=3
Х2=1
Теперь используем универсальный метод интервалов. Для этого наносим наши корни на числовую прямую и ищем отрицательный промежуток, подставляя для этого числа с промежутков в уравнение. Получаем:
+ — +
0——о——-о———>х
1 3
Видим, что нужным нам промежуток лежит в интервале от 1 до 3, т.е. <1х<3, а в ответ запишем через знак принадлежности.
ответ: х принадлежит(э в другую сторону) (1;3).
Пусть Х - было во 2-й
тогда 3Х - было в 1-й
(3Х-8) - стало в 1-й
(Х+14) - стало во 2-й
А по условию в них стало поровну, поэтому составим уравнение
3Х-8=Х+14
3Х-Х=14+8
2Х=22
Х=22:2
Х=11 (кг) - было во 2-1
3Х=3*11=33 (кг) - было в 1-й
Рост мальчика 75 см и еще половина его роста. Каков рост мальчика?
1) 75/2 = 37,5 см половина роста
2) 75 + 37,5 = 112,5 см
За 6 часов работы ученик сделал столько же деталей, сколько мастер за 4 часа. Известно, мастер изготовлял в час на 5 деталей больше, чем ученик. Сколько деталей в час изготовлял ученик?
Пусть х дет. изготавливает за 1 час ученик.
Тогда: (х+5) дет. изготавливает мастер за 1 час.
Зная, что за кол-во деталей, изготовленное учеником за 6 часов и мастером за 4 часа одинаково, составим и решим уравнение.
6*х=4*(х+5)
6х=4х+20
6х-4х=20
2х=20
х=20/2
х=10
ответ: 10 деталей изготавливает ученик за час.