выносливость - важнейшее качество, проявляющееся в профессиональной, спортивной деятельности и в повседневной жизни людей. она отражает общий уровень работоспособности человека.
являясь многофункциональным свойством человеческого организма, выносливость интегрирует в себе большое число процессов, происходящих на различных уровнях: от клеточного и до целостного организма. однако, как показывают результаты современных научных исследований, в большинстве случаев ведущая роль в проявлениях выносливости принадлежит факторам энергетического обмена и вегетативным системам его обеспечения - сердечно-сосудистой и дыхательной, а также центральной нервной системе.
выносливость - это способность человека к длительному выполнению какой-либо работы без заметного снижения работоспособности. а уровень выносливости обычно определяется временем, в течение которого человек может выполнять заданное . чем продолжительнее время работы, тем больше выносливость. это качество необходимо при длительном беге, ходьбе на лыжах и при выполнении более кратковременных скоростного и силового характера.
учитывая то, какое огромное значение имеет выносливость для здоровья, развития, трудовой деятельности и успешной воинской службы, актуальность данной темы вне всяких сомнений.
При выяснении вопроса о применимости векторного метода к решению той или иной задачи, необходимо установить возможность выражения всех данных соотношений между известными и искомыми величинами на языке векторов. Если это можно сделать без больших затруднений, то есть смысл при решении такой задачи использовать векторы.
Решение геометрических задач с векторов протекает успешнее, если вы будете придерживаться общих правил поиска решения. Полезно использовать девять таких правил:
1. Начиная решать задачу, посмотрите, что дано и что требуется доказать; отделите условие задачи от ее заключения; запишите условие и заключение задачи через общепринятые обозначения.
2. Выясните все (по возможности) соотношения, из которых следует заключение задачи; запишите их в векторной форме.
3. Сопоставьте каждое из рассматриваемых соотношений с тем, что дано, и с рисунком и посмотрите, какое из них лучше выбрать для доказательства.
4. Из того, что дано, получите следствия, которые связаны (или могут быть связаны) с выбранным вами соотношением.
5. Выделяя на рисунке векторы, входящие в выбранное вами соотношение, постоянно задавайте себе вопрос: «Через какие векторы можно их выразить? » Для ответа на поставленный вопрос рассматривайте эти векторы во всех целесообразных (обнадеживающих) соотношениях с другими.
6. Если для выражения вектора через другие нужно сделать дополнительные построения на рисунке, сделайте их так, чтобы это выражение было наиболее простым.
7. Постоянно помните, что дано в условии задачи, и в случае затруднений проверьте, не упустили ли вы что-либо из условия.
8. Так как затруднения могут быть связаны также с тем, что вы не применили какую-либо задачу или теорему, то в случае затруднения постарайтесь мысленно перебрать известные вам теоремы и решенные задачи и подумать, нельзя ли воспользоваться какой-нибудь из них.
9. Если выбранное вами соотношение (по правилу 2) не удалось доказать, применив все правила 4-8, то выберите другое и снова выполняйте правила 4-8 уже относительно него.
Пошаговое объяснение:
I. Для овладения умением переходить от геометрического языка к векторному и обратно необходимо знать, как то или иное векторное соотношение выражается на геометрическом языке. Например:
а) Равенство = k (k –некоторое число) , означает, что прямые АВ и СД параллельны.
б) Равенства = m/n и = n/(m+n) + m/(m+n) , (m,n –некоторые числа, Q –произвольная точка плоскости) означают, что точка С делит некоторый отрезок АВ в отношении m к n, т. е. AC : CB = m : n. При этом точка Q может быть выбрана так, чтобы последнее равенство доказывалось наиболее просто (это равенство следует из теоремы о делении отрезка в данном отношении) .
в) Каждое из равенств = k1 , = k2 , = k3 , = p +q (где k1, k2, k3, p, q - некоторые числа, p+q=1, Q – произвольная точка плоскости) , a +b +g = 0 (a, b, g - некоторые числа, a+b+g = 0, Q -произвольная точка плоскости) означает принадлежность трех точек А, В, С одной прямой (два последних равенства следуют из теоремы о принадлежности трех точек одной прямой) .
г) . Равенство . = 0, где A ¹ B; C¹D, означает, что прямые АВ и СД перпендикулярны. (Указанное равенство следует из свойств скалярного произведения векторов.)
решение в добавленный файле