М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
khinmy
khinmy
02.01.2023 15:52 •  Математика

вычислить предел! По идее правильный ответ -10, но я без понятия как его получить, если кто-то сможет объяснить - буду бесконечно благодарен. \lim_{x \to 1} \frac{sin(5\pi x)*arcsin(x-1) }{arccos(x-1)*(x^2-2x+1)}

👇
Ответ:
operovist
operovist
02.01.2023

-10

Пошаговое объяснение:

Нам тут понадобится правило Лопиталя.

если \displaystyle \lim_{n \to a} \dfrac fg=\dfrac00 или \displaystyle \lim_{n \to a} \dfrac fg=\dfrac\infty\infty то \displaystyle \lim_{n \to a} \dfrac fg=\displaystyle \lim_{n \to a} \dfrac {f'}{g'}

1

\displaystyle \lim_{x \to 1} \frac{\sin(5\pi x)\cdot\arcsin(x-1)}{\arccos(x-1)\cdot(x^2-2x+1)}

2 Вынесем -1 по формуле \arcsin(x-1)=-\arcsin(1-x)

\displaystyle -\lim_{x \to 1} \frac{\sin(5\pi x)\cdot\arcsin(1-x)}{\arccos(x-1)\cdot(x^2-2x+1)}

3 Запишем предел произведения дробей как произведение пределов

\displaystyle- \lim_{x \to 1} \frac{1}{\arccos(x-1)}\cdot\lim_{x \to 1} \frac{\sin(5\pi x)\cdot\arcsin(1-x)}{x^2-2x+1}

4 Подставим в первом пределе значение и посчитаем

\displaystyle- \lim_{x \to 1} \frac{1}{\arccos(1-1)}\cdot\lim_{x \to 1} \frac{\sin(5\pi x)\cdot\arcsin(1-x)}{x^2-2x+1}

\displaystyle-\lim_{x \to 1}\frac{1}{\arccos0}\cdot\lim_{x \to 1} \frac{\sin(5\pi x)\cdot\arcsin(1-x)}{x^2-2x+1}

\displaystyle-\dfrac2\pi\cdot\lim_{x \to 1} \frac{\sin(5\pi x)\cdot\arcsin(1-x)}{x^2-2x+1}

5 Cоберем квадрат в знаменателе x^2-2x+1=(x-1)^2

\displaystyle-\dfrac2\pi\cdot\lim_{x \to 1} \frac{\sin(5\pi x)\cdot\arcsin(1-x)}{(x-1)^2}

6 Получили предел вида \dfrac00 воспользуемся правилом Лопиталя

\displaystyle-\dfrac2\pi\cdot\lim_{x \to 1} \frac{(\sin(5\pi x)\cdot\arcsin(1-x))'}{(x-1)'}

\displaystyle-\dfrac2\pi\cdot\lim_{x \to 1} \frac{\sin(5\pi x)'\cdot\arcsin(x-1)+\sin(5\pi x)\cdot\arcsin(1-x)'}{2x-2}

\displaystyle-\dfrac2\pi\cdot\lim_{x \to 1} \frac{(-x(x-2))^{-\frac12}\bigg(5\pi\sqrt{-x(x-2)}\arcsin(1-x)\cos(5\pi x)-\sin(5\pi x) \bigg)}{2x-2}

Тут я сразу вынес за скобки

7 Вынесем \dfrac12 (взял 2 в знаменателе) за предел и сократим

\displaystyle-\dfrac1\pi\cdot\lim_{x \to 1} \frac{(-x(x-2))^{-\frac12}\bigg(5\pi\sqrt{-x(x-2)}\arcsin(1-x)\cos(5\pi x)-\sin(5\pi x) \bigg)}{x-1}

8 Распишем как произведение пределов

\displaystyle-\dfrac1\pi\cdot\lim_{x \to 1}(-x(x-2))^{-\frac12}\cdot \lim_{x \to 1} \frac{5\pi\sqrt{-x(x-2)}\arcsin(1-x)\cos(5\pi x)-\sin(5\pi x)}{x-1}

9 Посчитаем первый предел

\displaystyle-\dfrac1\pi\cdot\lim_{x \to 1}(-1(1-2))^{-\frac12}\cdot \lim_{x \to 1} \frac{5\pi\sqrt{-x(x-2)}\arcsin(1-x)\cos(5\pi x)-\sin(5\pi x)}{x-1}

\displaystyle-\dfrac1\pi\cdot1\cdot \lim_{x \to 1} \frac{5\pi\sqrt{-x(x-2)}\arcsin(1-x)\cos(5\pi x)-\sin(5\pi x)}{x-1}

10 Распишем разность дробей в пределе

\displaystyle-\dfrac1\pi\cdot \lim_{x \to 1} \frac{5\pi\sqrt{-x(x-2)}\arcsin(1-x)\cos(5\pi x)}{x-1}-\frac{\sin(5\pi x)}{x-1}

11 Распишем предел разности как разность пределов

\displaystyle-\dfrac1\pi\cdot \Bigg(\lim_{x \to 1} \frac{5\pi\sqrt{-x(x-2)}\arcsin(1-x)\cos(5\pi x)}{x-1}-\lim_{x \to 1}\frac{\sin(5\pi x)}{x-1}\Bigg)

12 Распишем первый предел как произведение пределов и вынесем 5π

\displaystyle-\dfrac1\pi\cdot \Bigg(5\pi\lim_{x \to 1}\sqrt{-x(x-2)}\cos(5\pi x)\lim_{x \to 1}\frac{\arcsin(1-x)}{x-1}-\lim_{x \to 1}\frac{\sin(5\pi x)}{x-1}\Bigg)

13 Посчитаем первый предел

\displaystyle-\dfrac1\pi\cdot \Bigg(5\pi\lim_{x \to 1}\sqrt{-1(1-2)}\cos(5\pi )\lim_{x \to 1}\frac{\arcsin(1-x)}{x-1}-\lim_{x \to 1}\frac{\sin(5\pi x)}{x-1}\Bigg)

\displaystyle-\dfrac1\pi\cdot \Bigg(-5\pi\lim_{x \to 1}\frac{\arcsin(1-x)}{x-1}-\lim_{x \to 1}\frac{\sin(5\pi x)}{x-1}\Bigg)

14 В первом пределе снова неопределённость \dfrac00, снова Лопиталем

\displaystyle-\dfrac1\pi\cdot \Bigg(-5\pi\lim_{x \to 1}\frac{(\arcsin(1-x))'}{(x-1)'}-\lim_{x \to 1}\frac{\sin(5\pi x)}{x-1}\Bigg)

\displaystyle-\dfrac1\pi\cdot \Bigg(-5\pi\lim_{x \to 1}-\frac1{\sqrt{-x(x-2)}}-\lim_{x \to 1}\frac{\sin(5\pi x)}{x-1}\Bigg)

15 Теперь мы можем посчитать первый предел

\displaystyle-\dfrac1\pi\cdot \Bigg(-5\pi\lim_{x \to 1}-\frac1{\sqrt{-1(1-2)}}-\lim_{x \to 1}\frac{\sin(5\pi x)}{x-1}\Bigg)

\displaystyle-\dfrac1\pi\cdot \Bigg(5\pi-\lim_{x \to 1}\frac{\sin(5\pi x)}{x-1}\Bigg)

16 Снова используем правило Лопиталя, так как у нас неопределённость \dfrac00

\displaystyle-\dfrac1\pi\cdot \Bigg(5\pi-\lim_{x \to 1}\frac{(\sin(5\pi x))'}{(x-1)'}\Bigg)

\displaystyle-\dfrac1\pi\cdot \Bigg(5\pi-\lim_{x \to 1}5\pi\cos(5\pi x)\Bigg)

17 Выносим константу

\displaystyle-\dfrac1\pi\cdot \Bigg(5\pi-5\pi\lim_{x \to 1}\cos(5\pi x)\Bigg)

18 Посчитаем предел

\displaystyle-\dfrac1\pi\cdot \Bigg(5\pi-5\pi\lim_{x \to 1}\cos(5\pi )\Bigg)\\

\displaystyle-\dfrac1\pi\cdot \Bigg(5\pi+5\pi\Bigg)

19 Досчитываем!

\displaystyle-\dfrac1\pi\cdot 10\pi

-10

МЫ ПОЛУЧИЛИ ОТВЕТ

4,5(51 оценок)
Открыть все ответы
Ответ:
nika1557
nika1557
02.01.2023
а) Плоскость альфа параллельна AB, M принадлежит альфа, P принадлежит альфа .

Через точку P в плоскости (ABB_1) проведём PQ параллельна AB . Тогда плоскость (PQM) искомая по признаку параллельности прямой и плоскости (PQ параллельна AB , следовательно, (PQM) параллельна AB).

1 случай. Точка M совпадает с точкой A. В этом случае плоскость (PQM) (т. е. альфа) совпадает с (ABB_1) , сечение — прямоугольник (ABB_1 A_1) , и с учётом равенства трёх сторон получаем квадрат со стороной, равной 16 и периметром 64, что больше 40.

2 случай. Точка M находится внутри отрезка AC. В этом случае плоскость (PQM) не совпадает с (ABB_1) . Построим сечение призмы плоскостью (PQM). Пусть плоскость (PQM) пересекает нижнюю грань по прямой MN, N принадледит BC , тогда MN параллельна AB , ( в противном случае MN пересекается с AB в некоторой точке T и мы получаем противоречие: через три точки P, Q и T проходят две различные плоскости). Соединяя точки P и N, получаем искомое сечение PQMN.

Так как ABPQ — параллелограмм (AQ параллельна BP, AВ параллельна PQ) , даже прямоугольник, то AB = PQ = 16.

б) Решение по построению
Ответ: 24корень из 3 разделить на корень из 91
4,7(91 оценок)
Ответ:
никуля40
никуля40
02.01.2023
"Как я воспитана"
Я получила хорошее воспитание в своей интелигентной семье. Мои родители уделяют большое внимание моему воспитанию. Они стараются вырастить из меня образованного интелегентного человека. Моя мама ежедневно занимается со мной уроками музыки, учит меня готовить, проверяет моë домашнее задание, мы вместе с ней занимаемся йогой, она покупает мне интересные книги, которые я с удовольствием читаю. Мой папа занимается со мной сортом: зимой мы по выходным ездим на горнолыжную трассу и проводим там целый день, а летом мы месте с ним каждый вечер ездим на велосипеде. Они многое мне дают
4,6(74 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ