Пусть x книг — выдали в первый день, тогда (x - 120) книг — выдали во второй день, ((x - 120) - 30) книг — выдали в третий день. Так как за 3 дня было взято 780 книг, то составим и решим уравнение:
x + (x - 120) + ((x - 120) - 30) = 780
x + x - 120 + (x - 120 - 30) = 780
x + x - 120 + x - 150 = 780
3x - 270 = 780
3x = 780 + 270
3x = 1050
x = 1050 ÷ 3
x = 350 (книг) — было выдано в первый день
350 - 120 = 230 (книг) — было выдано во второй день
230 - 30 = 200 (книг) — было выдано в третий день
ОТВЕТ: в первый день было выдано 350 книг, во второй день 230 книг, а в третий 200 книг
Для единицы поверхности звезды, в соответствии с законом Стефана –Больцмана можно записать соотношение: Е = а*Т^4. Здесь Е – энергетическая светимость единицы поверхности звезды; а – постоянная Стефана-Больцмана; Т - абсолютная температура поверхности звезды. Используя эту формулу можно найти соотношение энергетических светимостей единиц поверхности звезды и Солнца. Ес/Ез = а*Тс^4/а*Тз^4 = Тс^4/Тз^4 = (Тс/Тз)^4 = (6000/4000)^4 =1,5^4 = 5,0625. Таким образом, светимость единицы поверхности Солнца из-за большей температуры больше в 5 с лишним раз, нежели светимость единицы поверхности заданной звезды. Но суммарная светимость заданной звезды в 400 раз больше суммарной светимости Солнца. Так произошло потому, что площадь поверхности заданной звезды больше площади поверхности Солнца. Больше во столько раз, во сколько раз могла бы быть больше суммарная светимость звезды, если бы она имела температуру Солнца. Таким образом, площадь поверхности заданной звезды в 5,0625*400 = 2025 раз больше площади поверхности Солнца. С некоторым приближением, будем считать, что звезда и Солнце имеют форму шара. Площадь поверхности шара определяется выражением S = π*d^2. Здесь d - диаметр шара. Отношение площадей нами найдено, тогда можно записать Sз/Sс =π*dз²/π*dс² = dз²/dс² = (dз/dс)²= 2025. Отсюда dз/dс = √2025 = 45. Заданная звезда больше Солнца в 45 раз.
140
Пошаговое объяснение: