Общепринятые форматы листов бумаги обозначают буквой А и цифрой: А0, А1, А2 и так далее. Лист формата А0 имеет форму прямоугольника, площадь которого равна 1 кв. м. Если лист формата А0 разрезать пополам параллельно меньшей стороне, получается два равных листа формата А1. Если лист А1 разрезать так же пополам, получается два листа формата А2. И так далее.
Пошаговое объяснение:
Отношение большей стороны к меньшей стороне листа каждого формата одно и то же, поэтому листы всех форматов подобны. Это сделано специально для того, чтобы пропорции текста и его расположение на листе сохранялись при уменьшении или увеличении шрифта при изменении формата листа.
В таблице даны размеры (с точностью до мм) четырёх листов, имеющих форматы А0, А1, А3 и А4.
1) 98:2 = 49 (проще считать, начиная из середины) 2) 18:2 = 9 (из одной половины вычтем 9, к другой добавим 9. В сумме разница между ними будет равна 18) 3) 1 часть = 49+9 = 58 2 часть = 98-58 = 40 (либо 2 часть = 49-9 = 40)
2. Алгебраический
Пусть 1 часть сетки будет равна Х. А вторая часть сетки будет равна Х-18 (потому что вторая часть на 18 меньше). Тогда: х+(х-18) = 98 х+х-18 = 98 2х-18 = 98 2х = 116 |:2 х=58 - это 1 часть сетки Тогда 2 часть = х-18 = 58-18 = 40
Общепринятые форматы листов бумаги обозначают буквой А и цифрой: А0, А1, А2 и так далее. Лист формата А0 имеет форму прямоугольника, площадь которого равна 1 кв. м. Если лист формата А0 разрезать пополам параллельно меньшей стороне, получается два равных листа формата А1. Если лист А1 разрезать так же пополам, получается два листа формата А2. И так далее.
Пошаговое объяснение:
Отношение большей стороны к меньшей стороне листа каждого формата одно и то же, поэтому листы всех форматов подобны. Это сделано специально для того, чтобы пропорции текста и его расположение на листе сохранялись при уменьшении или увеличении шрифта при изменении формата листа.
В таблице даны размеры (с точностью до мм) четырёх листов, имеющих форматы А0, А1, А3 и А4.