М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ychenicaa7
ychenicaa7
23.11.2022 19:18 •  Математика

В среднем из 100 человек 60 поддерживают определенного кандидата в парламент. Найти вероятность того, что из о тысячи человек кандидата поддерживают не более половины

👇
Ответ:
ЛАПУЛЛЯ
ЛАПУЛЛЯ
23.11.2022
Чтобы решить эту задачу, нужно использовать биномиальное распределение.

Дано, что из 100 человек 60 поддерживают определенного кандидата. То есть, вероятность поддержки кандидата в одном случае равна 60/100, или 0.6. Обозначим это как p.

Теперь нам нужно найти вероятность того, что из 1000 человек кандидата поддерживают не более половины. Обозначим это как P(X ≤ 500), где X - случайная величина, равная количеству людей, поддерживающих кандидата.

Так как у нас большое количество наблюдений (1000 человек), мы можем использовать нормальное приближение биномиального распределения с параметрами np и np(1-p), где n - количество наблюдений (1000 в нашем случае), p - вероятность успеха в одном случае (0.6).

Для того чтобы применить нормальное приближение, проверим неравенство np(1-p) ≥ 10:
1000 * 0.6 * (1 - 0.6) = 1000 * 0.6 * 0.4 = 240 ≥ 10

Условие выполнено, поэтому можем продолжать с использованием нормального приближения.

Среднее значение биномиального распределения равно μ = np = 1000 * 0.6 = 600
Дисперсия биномиального распределения равна σ^2 = np(1-p) = 1000 * 0.6 * 0.4 = 240

Теперь мы можем применить нормальное распределение. Наша задача - найти P(X ≤ 500), то есть найти вероятность того, что значение случайной величины X будет меньше или равно 500.

Мы знаем, что нормальное распределение среднего μ и дисперсией σ^2 может быть преобразовано в стандартное нормальное распределение с параметрами 0 и 1, используя следующее преобразование: Z = (X - μ) / σ

Применяя это преобразование, мы получим: Z = (500 - 600) / √240 ≈ -4.082

Теперь мы можем использовать таблицу стандартного нормального распределения или калькулятор, чтобы найти вероятность P(Z ≤ -4.082). Из таблицы получаем значение примерно равное 0.00003.

Таким образом, вероятность того, что из 1000 человек кандидата поддерживают не более половины, составляет примерно 0.00003 или 0.003%.
4,5(24 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ