Пошаговое объяснение:
составить уравнение плоскости проходящей через точки А (3,-1,2) , В (2,1,4) и параллельно вектору а =(5,-2,-1)
уравнение плоскости, проходящей через точку М (Хо, Уо, Zо) перпендикулярно вектору нормали
N(А, В, С) имеет вид
А (Х- Хо) +В (У- Уо) +С (Z- Zо) =0
Точка по условию задана, найдем вектор нормали N(А, В, С) . Точки А (3,-1,2) , В (2,1,4) принадлежат плоскости, вектор АВ имеет координаты (2-3,1-(-1),4-2) или АВ (-1,2,2) второй вектор а =(5,-2,-1), тогда вектор нормали N(А, В, С) , есть векторное произведение двух векторов АВ (-1,2,2) и а =(5,-2,-1)
N=АВ х а= матрица
i….. j…… k
-1…..2…….2 =
5….-2…….-1
Разложим матрицу по первой строке
I * матрица
2……2
-2…-1 -
J* матрица
-1….2
5….-1+
k* матрица
-1…..2
5…..-2=
=2 *I+9* J-8* k, т. е.
Вектор нормали имеет координаты N(2,9,-8), точку возьмем любую, например, А (3,-1,2), подставим в уравнение плоскости получим
2(Х- 3)+9(У+1)-8(Z- 2)=0
Раскроем скобки получим, уравнение плоскости
2х+9у-8 Z+19=0
УДАЧИ
Сначала выберем каких-нибудь троих красных хамелеонов. Так как они все не сидят на одной прямой, они сидят в вершинах треугольника. Пусть данный треугольник не удовлетворяет условию задачи, тогда на его сторонах есть хотя бы три синих хамелеона. Так как эти три синих хамелеона не сидят на одной прямой, они сидят в вершинах треугольника, площадь которого меньше площади предыдущего. Если новый треугольник снова не удовлетворяет условию задачи, выберем аналогичным образом (на сторонах нового треугольника) ещё один. Так как каждый последующий треугольник по площади меньше предыдущего, когда-нибудь этот процесс остановится. Полученный в конце треугольник удовлетворяет условию задачи.