Сколько в кинозале рядов, если при любом размещении 30зрителей найдется ряд, в котором сидит 2 зрителя, а при любом размещение 26зрителей,по крайне мере, три ряда окажутся пустыми.
Жаркий пояс лежит между тропиками. В его пределах Солнце два раза в году бывает в зените, на тропиках – по одному разу в год, в дни солнцестояний (и этим они отличаются от всех остальных параллелей). На экваторе день всегда равен ночи. На других широтах этого пояса продолжительность дня и ночи мало меняется в течение года. Жаркий пояс занимает около 40% земной поверхности. Умеренные пояса (их два) располагаются между тропиками и полярными кругами соответствующего полушария. Солнце в них никогда не бывает в зените. В течение суток обязательно происходит смена дня и ночи, причем продолжительность их зависит от широты и времени года. Близ полярных кругов (с 60 до 66,5° ш.) летом наблюдаются светлые белые ночи с сумеречным освещением. Общая площадь умеренных поясов составляет 52% земной поверхности. Холодные пояса (их два) находятся к северу от Северного и к югу от Южного полярных кругов. Эти пояса отличаются наличием полярных дней и ночей, продолжительность которых постепенно увеличивается от одних суток на полярных кругах (и этим они отличаются от всех остальных параллелей) до полугода на полюсах. В начале и в конце полярных ночей в течение 2-3 недель наблюдаются белые ночи. Общая площадь холодных поясов составляет 8% земной поверхности. Пояса освещения – основа климатической зональности и природной зональности вообще.
2) Функция не является ни чётной, ни нечётной. Докажем это:
;
≠ ± 1 при любых аргументах ;
≠ ± 1 ;
Найдём первую производную функции y(x) :
;
;
При x = 0, производная y'(x) – не определена, хотя сама функция определена при любых аргументах, так что функция непрерывна на всей числовой прямой, но непрерывно-дифференцируема за исключением ноля.
Убедимся в этом, вычислив предел около ноля слева и справа
;
;
3) Функция определена при любых x, поэтому точек разрыва нет.
Если приравнять функцию к нолю, получим:
;
;
Что возможно только при , т.е. при x = 0 ;
Итак, точка ( 0 ; 0 ) – принадлежит нашему графику.
4. Найдем асимптоты y(x).
Точек разрыва нет, значит, нет и вертикальных асимптот.
Посмотрим, что происходит с функцией y(x) при устремлении аргумента к ± :
;
;
;
Поскольку, , то:
;
Значит, уходя на отрицательную бесконечность аргумента y(x) и сама стремиться к бесконечности, а уходя на положительную бесконечно по аргументу y(x) стремится к нулю ;
Из этого следует, что при x>0 есть горизонтальная асимптота y = 0 .
Чтобы найти наклонную асимптоту, найдем предел первой производной на отрицательной бесконечности по аргументу:
;
– по доказанному в пределе самой функции .
;
А это означает, что наклонной асимптоты на отрицательной бесконечности нет. А на положительной – горизонтальная.