М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ilonctik
ilonctik
21.06.2020 03:15 •  Математика

Найдите точку максимума функции
у=ln (x-7) -2x- 3

👇
Ответ:
lina5555555
lina5555555
21.06.2020
Хорошо, давайте разберемся с этим вопросом.
Функция дана в виде у=ln (x-7) -2x- 3. Чтобы найти точку максимума этой функции, мы должны найти x-координату вершины параболы, которая соответствует максимальному значению функции.

1. Начнем с нахождения производной функции. Для этого возьмем производную от каждого члена выражения по x.
dy/dx = d/dx (ln (x-7) -2x- 3)

2. Применим правило дифференцирования для каждого члена выражения:
dy/dx = 1/(x-7) - 2

3. Зададим производную равной нулю и решим полученное уравнение:
1/(x-7) - 2 = 0

4. Избавимся от знаменателя, умножив обе части уравнения на (x-7):
1 - 2(x-7) = 0

5. Раскроем скобки:
1 - 2x + 14 = 0

6. Соберем все члены с x в одну часть уравнения, перенося числовые значения в другую:
-2x + 15 = 0

7. Решим полученное линейное уравнение:
-2x = -15
x = (-15) / (-2)
x = 7.5

Таким образом, получили, что x = 7.5.

8. Подставим найденное значение x обратно в исходную функцию, чтобы найти соответствующее значение y:
y = ln (7.5 - 7) - 2(7.5) - 3
y = ln (0.5) - 15 - 3
(уточните ответ вместо меня)

Итак, точка максимума функции у=ln (x-7) -2x- 3 равна (7.5, у).
Найденные значения x и y являются координатами точки максимума функции.
4,6(66 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ