Сначала выберем каких-нибудь троих красных хамелеонов. Так как они все не сидят на одной прямой, они сидят в вершинах треугольника. Пусть данный треугольник не удовлетворяет условию задачи, тогда на его сторонах есть хотя бы три синих хамелеона. Так как эти три синих хамелеона не сидят на одной прямой, они сидят в вершинах треугольника, площадь которого меньше площади предыдущего. Если новый треугольник снова не удовлетворяет условию задачи, выберем аналогичным образом (на сторонах нового треугольника) ещё один. Так как каждый последующий треугольник по площади меньше предыдущего, когда-нибудь этот процесс остановится. Полученный в конце треугольник удовлетворяет условию задачи.
Пошаговое объяснение:
Відрізок АВ перетинає площину α, отже, Т. А і т. В розташовані по по різні боки від площини.
Через дві паралельні прямі можна провести площину, притому тільки одну. АА1 і ВВ1 лежать в одній площині, паралельна їм ММ1 лежить в тій же площині. Ця площина перетинає площину α по прямій А1В1.
Проведемо АС∙А1В1 і продовжимо ММ1 до перетину з нею в т. К, А ВВ1 - в точці С.
У паралелограмі аа1в1с сторони СВ1=АА1=5, МК паралельна їм і дорівнює 5.
В ∆ АВС пряма МК-середня лінія і дорівнює половині ВС.
ВС=ВВ1+СВ1=12
МК=12: 2=6
ММ1=МК-М1К=6-5=1 (од. довжини)
23
Пошаговое объяснение: