М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
loza83olesya
loza83olesya
17.06.2022 17:00 •  Математика

Решите систему методом алгебраического сложения


Решите систему методом алгебраического сложения

👇
Ответ:
SalaevaDarina
SalaevaDarina
17.06.2022

y=1,x=2

Пошаговое объяснение:

9y+13x=35

29y-13x=3

38у=38

у=1

9*1+13х=35

13х=35-9

13х=26

х=2

4,4(61 оценок)
Открыть все ответы
Ответ:
dariak98
dariak98
17.06.2022

ответ: (2, -1, 1)

Пошаговое объяснение: Запишем систему уравнений в матричном виде.

\left[\begin{array}{cccc}3&-1&2&9\\2&3&-1&0\\2&4&3&3\end{array}\right]

Приведем к ступенчатому виду. Применяем операцию R_1=\frac{1}{3} R_1 к R_1 (к 1 строке) для того, чтобы сделать некоторые элементы строки равными 1.

\left[\begin{array}{cccc}1&-\frac{1}{3} &\frac{2}{3} &3\\2&3&-1&0\\2&4&3&3\end{array}\right]

Применяем операцию R_2=-2\times R_1+R_2 к R_2 (ко 2 строке) для того, чтобы сделать некоторые элементы строки равными 0.

\left[\begin{array}{cccc}1&-\frac{1}{3} &\frac{2}{3} &3\\2&3&-1&0\\2&4&3&3\end{array}\right]

Применяем операцию R_3=-2\times R_1+R_3 к R_3 (к 3 строке) для того, чтобы сделать некоторые элементы строки равными 0.

\left[\begin{array}{cccc}1&-\frac{1}{3} &\frac{2}{3} &3\\0&\frac{11}{3} &-\frac{7}{3}&-6 \\0&\frac{14}{3} &\frac{5}{3} &-3\end{array}\right]

Применяем операцию R_2=\frac{3}{11}R_2 к R_2 для того, чтобы сделать некоторые элементы строки равными 1.

\left[\begin{array}{cccc}1&-\frac{1}{3} &\frac{2}{3} &3\\0&1&-\frac{7}{11} &-\frac{18}{11} \\0&\frac{14}{3} &\frac{5}{3} &-3\end{array}\right]

Применяем операцию R_1=\frac{1}{3} R_2+R_1 к R_1 для того, чтобы сделать некоторые элементы равными 0.

\left[\begin{array}{cccc}1&0&\frac{5}{11}&\frac{27}{11} \\0&1&-\frac{7}{11}&-\frac{18}{11} \\0&\frac{14}{3} &\frac{5}{3} &-3\end{array}\right]

Применяем операцию R_3=-\frac{14}{3} R_2+R_3 к R_3 для того, чтобы сделать некоторые элементы строки равными 0.

\left[\begin{array}{cccc}1&0&\frac{5}{11}&\frac{27}{11} \\0&1&-\frac{7}{11}&-\frac{18}{11} \\0&0&\frac{51}{11} &\frac{51}{11} \end{array}\right]

Применяем операцию R_3=\frac{11}{51} R_3 к R_3 для того, чтобы сделать некоторые элементы строки равными 1.

\left[\begin{array}{cccc}1&0&\frac{5}{11}&\frac{27}{11} \\0&1&-\frac{7}{11}&-\frac{18}{11} \\0&0&1 &1 \end{array}\right]

Применяем операцию R_1=-\frac{5}{11}R_3+R_1 к R_1 для того, чтобы сделать некоторые элементы строки равными 0.

\left[\begin{array}{cccc}1&0&0&2 \\0&1&-\frac{7}{11}&-\frac{18}{11} \\0&0&1 &1 \end{array}\right]

Применяем операцию R_2=\frac{7}{11}R_3+R_2 к R_2 для того, чтобы сделать некоторые элементы равными 0.

\left[\begin{array}{cccc}1&0&0&2\\0&1&0&-1\\0&0&1&1\end{array}\right]

Воспользуемся полученной матрицей для того, чтобы описать итоговое решение системы уравнений.

x=2

y=-1

z=1

Решением является множество упорядоченных пар, которые удовлетворяют системе.

(2, -1, 1)

4,5(49 оценок)
Ответ:
yana07072005
yana07072005
17.06.2022

х₁=-4; х₂=-0,8

Пошаговое объяснение:

Раскрываем модуль и решаем как обычные уравнения. Вместе с этим обязательно нужно принимать во внимание, что при раскрытии модуля число модуля может быть как положительным так и отрицательным. После раскрытия модуля получаем уравнение:

0,5х-2=2х+4

2х-0,5х=-2-4

1,5х=-6

х=-6:1,5

х₁=-4

Проверка: (подставляем в уравнение найденное значение х₁=-4)

0,5*(-4)-2=2*(-4)+4

-2-2=-8+4

-4=-4

Дальше рассмотрим второй случай, с модулем отрицательного числа

0,5х-2=-2х-4

0,5х+2х=-4+2

2,5х=-2

х=-2:2,5

х₂=-0,8

Проверка: (подставляем в уравнение найденное значение х₂=-0,8

0,5*(-0,8)-2=-2*(-0,8)-4

-0,4-2=1,6-4

-2,4=-2,4

4,8(71 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ