3/8, 2/5, 1/2.
Пошаговое объяснение:
Если при разложении знаменателя обыкновенной несократимой дроби среди простых множителей содержатся только 2 и 5, то такую дробь можно представить в виде конечной десятичной.
1/3, знаменатель 3 делится на 3, представить в виде конечной десятичной дроби нельзя;
3/8, знаменатель 8 = 2•2•2, не содержит других простых множителей, кроме 2 и 5, такую дробь можно представить в виде конечной десятичной дроби;
2/9, знаменатель 9 делится на 3, представить в виде конечной десятичной дроби нельзя;
2/5, знаменатель 5 указывает на то, что такую дробь можно представить в виде конечной десятичной дроби;
4/7, знаменатель дроби делится на 7, а потому представить в виде конечной десятичной дроби нельзя;
1/2, знаменатель 2 указывает на то, что такую дробь можно представить в виде конечной десятичной дроби.
1) Все углы равностороннего треугольника равны по 60º.
2) Высота, медиана и биссектриса, проведённые к каждой из сторон равностороннего треугольника, совпадают:
AK — высота, медиана и биссектриса, проведённые к стороне BC;
BF — высота, медиана и биссектриса, проведённые к стороне AC;
CD — высота, медиана и биссектриса, проведённые к стороне AB.
Длины всех трёх высот (медиан, биссектрис) равны между собой:
AK=BF=CD.
Если a — сторона треугольника, то
3) Точка пересечения высот, биссектрис и медиан называется центром правильного треугольника и является центром вписанной и описанной окружностей (то есть в равностороннем треугольнике центры вписанной и описанной окружностей совпадают).
4) Точка пересечения высот, биссектрис и медиан правильного треугольника делит каждую из них в отношении 2:1, считая от вершин:
AO:OK=BO:OF=CO:OD=2:1.
5) Расстояние от точки пересечения высот, биссектрис и медиан