Цей дріб буде дорівнювати 0.4=4/10=2/5
5^(x + 1) ≤ 3^(2x - 3)
логарифмируем по любому основанию или 5 или 3 (пусть 3)
log(3) 5^(x + 1) ≤ log(3) 3^(2x - 3)
(x + 1)log(3) 5 ≤ 2x - 3
2x - xlog(3) 5 ≥ 2 + log(3) 5
x (2 - log(3) 5 ) ≥ 2 + log(3) 5
2 - log(3) 5 > 0 поэтому при делении знак не меняется
x ≥ (2 + log(3) 5)/(2 - log(3) 5)
7^(x - 2) ≥ 2^(3x + 1)
логарифмируем по основанию 7
loq(7) 7^(x - 2) ≥ log(7) 2^(3x + 1)
x - 2 ≥ (3x + 1) log(7) 2
x - 3x*log(7) 2 ≥ log(7) 2 + 2
x(1 - 3log(7) 2) ≥ log(7) 2 + 2
1 - 3log(7) 2 > 0 при делении знак не меняется
х ≥ ( log(7) 2 + 2) / (1 - 3*log(7) 2)
Имеем право логарифмировать так как в обоих частях неравенства присутствую только положительные числа
Как то так Кракозябер (+)
75√3
Пошаговое объяснение:
ABCD - прямокутник; т.О - точка перетину діагоналей АС і BD - діагоналі; у прямокутнику діагоналі рівні і діляться точкою перетину навпіл: AO=OC=BO=OD= 10√3÷2см = 5√3см.
Оскільки ∠BAD=90°, а ∠DAC = 30°(за умовою - кут між діагоналлю і більшою стороною), то ∠BAC = ∠BAD - ∠DAC = 90° - 30° = 60°(Як суміжні кути).
∠ABD = ∠BAC (BC - інша, більша сторона, BD - діагональ, ∠DBC=30°)
У трикутника сума кутів дорівнює 180°
Розглянемо ΔABO:
∠BOA = 180° - 60° - 60° = 60°. Всі кути рівні, а отже трикутник - рівносторонній.
У рівностороннього трикутника всі сторони рівні. AB=BO=AO= 5√3см.
Розглянемо ΔABD(∠A=90°):
BD=10√3см - гіпотенуза;
AB=5√3см - катет.
За теоремою піфагора:
BD²=AD²+AB²; звіздси
AD²=BD²-AB²
AD²=(10√3)²-(5√3)²
AD²=300-75
AD²=225
AD=±15; -15 не влаштовує умову задачі.
S=AB × AD
S=5√3 × 15 = 75√3
0,4=2/5
Пошаговое объяснение: