М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
shopsms982
shopsms982
03.06.2021 06:37 •  Математика

Используя рисунок, составьте и решите уравнение​


Используя рисунок, составьте и решите уравнение​

👇
Открыть все ответы
Ответ:
sonka247
sonka247
03.06.2021

Пошаговое объяснение:

Доказать тавтологию - значит показать, что при всех истинностных значениях булевых переменных логическое выражение будет принимать только значение ИСТИНА.

Для первого логического выражения составляем таблицу (F - ЛОЖЬ, T - ИСТИНА):

\left[\begin{array}{cccc}A&B&B\to A&A\to(B\to A)\\F&F&T&T\\F&T&F&T\\T&F&T&T\\T&T&T&T\end{array}\right]

Видно, что последний столбец, соответствующий заданному логическому выражению, состоит только из значений ИСТИНА при любом наборе булевых переменных.

Для второго логического выражения также составляем таблицу:

\left[\begin{array}{ccccccccccc}A&B&C&A\to B&A\to C&(A\to B)\to (A\to C)&B\to C& A \to (B\to C)&Func\\F&F&F&T&T&T&T&T&T\\F&F&T&T&T&T&T&T&T\\F&T&F&T&T&T&F&T&T\\F&T&T&T&T&T&T&T&T\\T&F&F&F&F&T&T&T&T\\T&F&T&F&T&T&T&T&T\\T&T&F&T&F&F&F&F&T\\T&T&T&T&T&T&T&T&T\end{array}\right]

Видно, что последний столбец, соответствующий заданному логическому выражению, состоит только из значений ИСТИНА при любом наборе булевых переменных.

Таблица для третьего логического выражения:

\left[\begin{array}{ccccccccccc}A&B&A\to B&\lnot A\to B&(\lnot A\to B)\to B&(A\to B)\to ((\lnot A\to B)\to B) \\F&F&T&F&T&T\\F&T&T&T&T&T\\T&F&F&T&F&T\\T&T&T&T&T&T\end{array}\right]

Видно, что последний столбец, соответствующий заданному логическому выражению, состоит только из значений ИСТИНА при любом наборе булевых переменных.

4,8(68 оценок)
Ответ:
qqlaza
qqlaza
03.06.2021

То, что решается через характеристическое уравнение - это общее решение. Оно всегда будет независимо от правой части диффура.

По сути, нужно найти так называемое частное решение, и тогда решением для этого диффура будет сумма общего и частного решений.

Частное решение подбирается, исходя из правой части. В данном случае, правая часть есть многочлен второго порядка. Поэтому частное решение будет также иметь вид многочлена, причем многочлена второго порядка: y_c(x) = Ax^2+Bx+C (y_c(x) - частное решение, A, B и C - константы, которые нужно подобрать). Теперь необходимо подставить это решение вместо y в данном диффуре, и найти константы.

(второго порядка потому, что многочлена первого порядка может не хватать, а многочлен не ниже третьего порядка избыточен, можешь попробовать подставить многочлен третьего порядка, но при нахождении коэффициентов он занулится)

UPD: ошибся в выборе многочена. Нужно использовать многочлен третьего порядка: y_c(x) = Ax^3+Bx^2+Cx+D (необходимо, чтобы после подстановки y_c(x) в диффур в левой части получился многочлен не ниже порядка многочлена в правой части)

4,4(60 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ