1
10 - 11 классы Геометрия 21 балл
В правильной четырехугольной пирамиде сторона основания равна 6 см, а угол наклона боковой грани к плоскости основания равен 60 градусов. Найдите боковое ребро пирамиды
По больше объяснений Следить Отметить нарушение Missvolodya 18.03.2011
ответ
Проверено экспертом
ответ дан
KuOV
KuOV
Пирамида правильная, значит в основании квадрат, боковые грани - равные равнобедренные треугольники, высота прецируется в точку пересечения диагоналей квадрата.
Пусть Н - середина CD. Тогда SH - медиана и высота равнобедренного треугольника SCD, ОН - медиана и высота равнобедренного треугольника OCD.
SH⊥CD, OH⊥CD, ⇒∠SHO = 60° - линейный угол двугранного угла между боковой гранью и основанием.
ОН = AD/2 = 6/2 = 3 cм как средняя линия ΔACD.
ΔSOH: ∠SOH = 90°, cos∠SHO = OH/SH
SH = OH / cos∠SHO = 3 / (1/2) = 6 см
ΔSHC: ∠SHC = 90°, SH = 6 см, HС = 3 см, по теореме Пифагора:
SC = √(SH²+ HC²) = √(36 + 9) = √45 = 3√5 см
Пошаговое объяснение:
63-36=(63+4)-(36+4)=67-40=27
53-19=(53+1)-(19+1)=54-20=34
66-37=(66+3)-(37+3)=69-40=29
95-57=(95+3)-(57+3)=98-60=38
42-13=(42+7)-(13+7)=49-20=29
73-57=(73+3)-(57+3)=76-60=16
82-39=(82+1)-(39+1)=83-40=43
77-18=(77+2)-(18+2)=79-20=59
43-29=(43+1)-(29+1)=44-30=14