М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nastya4030
nastya4030
22.07.2021 22:52 •  Математика

Гральний кубик підкинули 11 разів. Знайти ймовірність того що непарна кількість очок випаде 7 разів

👇
Открыть все ответы
Ответ:
рута2
рута2
22.07.2021
1. Чтобы доказать, что прямая BM перпендикулярна плоскости AOC, нам нужно использовать свойства равнобедренного треугольника. Поскольку треугольник ABC является равнобедренным и AM является медианой (так как M - середина стороны AC), то AM является высотой этого треугольника. Таким образом, AM перпендикулярна BC.

Также, прямая MO проведена перпендикулярно BM, что значит, что прямая MO лежит в плоскости, перпендикулярной BC. Аналогично, прямая MO также лежит в плоскости AOC. Так как BM перпендикулярна плоскости, перпендикулярной BC, и MO лежит в плоскости AOC, то BM перпендикулярна плоскости AOC.

2. Расстояние от точки M до прямой BD можно вычислить с использованием теоремы Пифагора.

Мы знаем, что MC = 1 см, а CD = 4 см. Точка M является серединой стороны AC, поэтому AM = MC = 1 см. Квадрат длины AM равен 1^2 = 1 см^2.

Также, мы знаем, что CD = 4 см, что означает, что BD = BC - CD = BC - 4 см.

По теореме Пифагора в прямоугольном треугольнике BDM с гипотенузой BD и катетами DM и MB:

BD^2 = DM^2 + MB^2.

Так как DM = AM - AD = 1 см - 4 см = -3 см (так как точка M находится слева от D), а MB = BM, можем записать уравнение:

BD^2 = (-3 см)^2 + MB^2.

BD^2 = 9 см^2 + MB^2.

Теперь посмотрим на треугольник MBC. Мы знаем, что MC = 1 см и MB = BM. Используя теорему Пифагора:

MB^2 = MC^2 + BC^2.

MB^2 = (1 см)^2 + BC^2.

MB^2 = 1 см^2 + BC^2.

Мы теперь можем заменить MB^2 в уравнении для BD^2:

BD^2 = 9 см^2 + 1 см^2 + BC^2.

BD^2 = 10 см^2 + BC^2.

BD = √(10 см^2 + BC^2).

3. Чтобы найти сторону треугольника ABC, нам нужно использовать информацию о точке K и применить свойства правильных треугольников.

Мы знаем, что точка K находится на расстоянии 4 см от каждой вершины правильного треугольника ABC. Так как треугольник равносторонний, все его стороны и высоты равны. Поэтому, если мы проведем высоту AK, то она будет равна 4 см.

Также, мы знаем, что точка K удалена от плоскости ABC на 2 см. Это означает, что точка K находится над плоскостью ABC.

Представим, что проводим плоскость, параллельную ABC и проходящую через точку K. По свойству высот треугольника, точка K является вершиной прямоугольного треугольника AKH (H - середина BC).

Мы знаем, что высота AK этого прямоугольного треугольника равна 4 см, а высота равностороннего треугольника ABC также равна 4 см. Поэтому, сторона BC прямоугольного треугольника AKH равна половине стороны треугольника ABC.

Таким образом, сторона треугольника ABC равна 2 * BC.

4. Чтобы найти расстояние от точки P до прямой CD, мы можем использовать свойства перпендикуляров и прямоугольник ABCD.

Мы знаем, что точка P удалена от прямой BC на см. Также, мы знаем, что BC = 12 см и BD = 13 см.

Представим, что проводим перпендикуляр PA к плоскости ABCD, который пересекает линию CD в точке D1.

Так как PA перпендикулярна плоскости ABCD, она перпендикулярна всем прямым, лежащим в этой плоскости. Это означает, что угол PDA равен прямому углу.

Поэтому, треугольник PDA является прямоугольным, и мы можем использовать теорему Пифагора для вычисления расстояния PD1.

Мы знаем, что BC = 12 см и BD = 13 см, поэтому AD = √(BD^2 - BC^2) = √(13 см^2 - 12 см^2) = √(169 см^2 - 144 см^2) = √(25 см^2) = 5 см.

Теперь, мы имеем прямоугольный треугольник PDA с гипотенузой PD и катетами AD и AD1.

Используя теорему Пифагора, заменяя AD1 на x, мы можем записать:

PD^2 = AD^2 + AD1^2.

PD^2 = 5 см^2 + x^2.

Также, мы знаем, что точка P удалена от прямой BC на см. То есть, AD1 = BC - s, где s - это расстояние от точки P до прямой BC.

Тогда, AD1 = 12 см - s.

Теперь, мы можем записать уравнение для PD^2:

PD^2 = 5 см^2 + (12 см - s)^2.

PD^2 = 5 см^2 + 144 см^2 - 24 см * s + s^2.

PD^2 = 149 см^2 - 24 см * s + s^2.

Таким образом, расстояние от точки P до прямой CD равно √(149 см^2 - 24 см * s + s^2).

5. Расстояние от точки до сторон равнобедренного треугольника можно найти с использованием свойства перпендикуляров и свойства равнобедренных треугольников.

Мы знаем, что высота и основание равнобедренного треугольника равны 8 см и 12 см соответственно. Также, мы знаем, что точка находится на расстоянии 4 см от плоскости треугольника.

Представим, что проводим высоту AM треугольника ABC из точки M до стороны BC.

Так как AM является высотой, то она перпендикулярна стороне BC и плоскости треугольника ABC. Аналогично, точка находится на расстоянии 4 см от плоскости треугольника, поэтому она также находится на расстоянии 4 см от стороны BC.

Теперь, у нас есть прямоугольный треугольник AMB с гипотенузой AB и катетами AM и MB.

Мы знаем, что AM = 8 см, и точка находится на расстоянии 4 см от стороны BC, поэтому MB = BC / 2 - 4 см = 12 см / 2 - 4 см = 6 см - 4 см = 2 см.

Используя теорему Пифагора, мы можем вычислить расстояние от точки до стороны треугольника:

AB^2 = AM^2 + MB^2.

AB^2 = 8 см^2 + 2 см^2.

AB^2 = 64 см^2 + 4 см^2.

AB = √(68 см^2).

Таким образом, расстояние от данной точки до стороны треугольника равно √(68 см^2).
4,6(72 оценок)
Ответ:
милкаshow
милкаshow
22.07.2021
Для решения данной задачи, нам понадобится использовать свойство описанной около пирамиды окружности. В этом случае, высота пирамиды будет радиусом окружности, вписанной в основание пирамиды, а гипотенуза равнобедренной трапеции будет радиусом окружности, описанной около пирамиды.

Из информации в условии задачи мы знаем, что высота пирамиды равна 10. Также, у нас есть равнобедренная трапеция с углом при основании 60° и боковой стороной 6. Пусть основания трапеции равны a и b.

Для начала, найдем основания трапеции a и b.

Мы можем разделить равнобедренную трапецию на два прямоугольных треугольника. Каждый из этих треугольников будет прямоугольным, так как его один угол равен 90°. Мы знаем, что угол при основании равен 60°, поэтому другой угол прямоугольного треугольника будет 180° - 90° - 60° = 30°.

Таким образом, мы имеем прямоугольные треугольники с гипотенузой 6 и углом 30°. Мы можем использовать тригонометрию, чтобы найти основания a и b:

sin(30°) = a / 6
a = 6 * sin(30°) ≈ 3

cos(30°) = b / 6
b = 6 * cos(30°) ≈ 5.196

Теперь, когда у нас есть значения a и b, мы можем продолжить и найти радиус окружности, вписанной в основание пирамиды.

Так как трапеция равнобедренная, одно из оснований трапеции проходит через центр окружности. Поэтому радиус окружности, вписанной в основание пирамиды, будет равен половине основания трапеции b.

Радиус окружности вписанной в основание пирамиды r = b / 2 = 5.196 / 2 ≈ 2.598

Теперь мы имеем радиус окружности r вписанной в основание пирамиды и высоту пирамиды h. Используем формулу для объема конуса:

V = (π * r^2 * h) / 3

Подставляем значения:

V = (π * 2.598^2 * 10) / 3
V ≈ (π * 6.744804 * 10) / 3
V ≈ (π * 67.44804) / 3

Таким образом, V/π ≈ 67.44804 / 3

Ответ: V/π ≈ 22.48268
4,4(81 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ