По определению производительность труда есть количество времени, затраченное на изготовление единицы продукции.
Имеем функцию U(t), показывающую количество продукции, произведенной от сотворения мира до некоторого момента времени.
За некоторый промежуток времени Dt с момента t1 будет произведено:
S=U(t1+Dt) - U(t1);
Тогда производительность труда на промежутке [t1,t1+Dt]:
П1=Dt/S=Dt/(U(t1+Dt)-U(t1));
Предел П1(Dt,t1) при Dt -> 0 даёт нам производительность труда в момент времени t1.
П=1/(-5*t1^2+40*t1+80)
1) Для получения максимального/минимального значения производительности труда исследуем функцию П (t1) на экстремумы.
Для этого приравниваем первую производную П'(t1) к нулю ("скорость" изменения функции в точке экстремума равна нулю) и решаем полученное уравнение. Исходя из условия задачи берем только те корни, которые удовлетворяют 0<=t<=8 а также моменты времени t1=0 и t1=8.
Подставляем полученные t1 в П (t1) и сравнив значения производительности выбираем максимальное.
2) Первая производная П (t1) дает скорость изменения производительности труда (V(t1)=П'(t1)),
вторая производная (A=V'(t1)=П''(t1)) - темп изменения производительности.
Соответственно скорость и темп изменения производительности через час после начала работы и за час до ее окончания будут:
V(1), A(1) и V(7), A(7);
Верхний график - изменение производительности труда во времени, нижний - U(t)
Пошаговое объяснение:
В решении.
Пошаговое объяснение:
Площадь сада имеющего форму прямоугольника с размерами 40 м Х 60 м увеличили как показано на рисунке.
а) Запишите выражение, которое показывает как площадь увеличенной части зависит от х.
S = (60 + х) * (40 + х).
b) Найдите х, если начальная площадь увеличится в 2 раза.
(60 + х) * (40 + х) = 2(60 * 40)
2400 + 60х + 40х + х² = 4800
х² + 100х - 2400 = 0, квадратное уравнение, ищем корни:
D=b²-4ac =10000 + 9600 = 19600 √D=140
х₁=(-b-√D)/2a
х₁=(-100-140)/2 = -240/2 = -120, отбросить, как отрицательный.
х₂=(-b+√D)/2a
х₂=(-100+140)/2
х₂=40/2
х₂=20.
Проверка:
80 * 60 = 4800 (м²), верно.
с) Как изменится периметр при увеличении площади в 2 раза? Выразите в процентах.
Р до увеличения = 2(60 + 40) = 200 (м).
Р после увеличения = 2(80 + 60) = 280 (м).
(280 - 200) : 200 * 100% = 40 (%).
|-1,5|=1,5
1,5*6=9
Пошаговое объяснение:
Правильный ответ 9 СДЕЛАЙ ОТВЕТ ЛУЧШИМ