Дано число N=10a+b, причем a=3b⇒N=31b. Поменяв местами цифры, получаем число M=10b+a=13b. По условию N=54M⇒31b=54·13b. Поскольку b - это цифра, такое возможно только если b=0⇒a=0⇒N=0; M=0; N=54M. Скорее всего, автор задания не готов считать число 00 двузначным. Тогда ответ такой: такого числа нет.
Но давайте пофантазируем: может быть автор ошибся, может быть он хотел написать, что второе число не в 54 раза меньше первоначального, а на 54 меньше первоначального. Тогда получается уравнение N=M+54; 31b=13b+54; 18b=54; b=3⇒a=9. То есть первоначальное число - это 93.
Дано число N=10a+b, причем a=3b⇒N=31b. Поменяв местами цифры, получаем число M=10b+a=13b. По условию N=54M⇒31b=54·13b. Поскольку b - это цифра, такое возможно только если b=0⇒a=0⇒N=0; M=0; N=54M. Скорее всего, автор задания не готов считать число 00 двузначным. Тогда ответ такой: такого числа нет.
Но давайте пофантазируем: может быть автор ошибся, может быть он хотел написать, что второе число не в 54 раза меньше первоначального, а на 54 меньше первоначального. Тогда получается уравнение N=M+54; 31b=13b+54; 18b=54; b=3⇒a=9. То есть первоначальное число - это 93.
Пошаговое объяснение:
- 8а· (- 15 b) = 120ab
120аб = 120аб
аб = 120 : 120
аб = 1
11x· (-7 y) = -77xy
-77ху = -77ху
ху = -77 : -77
ху = 1