а)./х/+ 2,8; Наибольшего нет (бесконечность). Наименьшее достигается при |x|=0, х=0, Ymin=2,8
б).1,2-/х/, Наименьшего нет (-бескон). Наибольшее достигается при |x|=0, х=0, Ymax=1,2.
в)./х+1/-5,4, Наибольшего нет (бескон). Наименьшее достигается при |x+1|=0, x= -1, Ymin = -5,4.
г).9-/2х-4/, Наименьшего нет(-бескон). Наибольшее достигается при
|2x-4|=0, x=2, Ymax = 9.
д)./х-1/+/x+1/=
| -2x , при x<-1
= | 2, при -1<=x<=1
| 2x, при x>1
Видим, что наибольшего нет(бескон). Наименьшее: Ymin = 2. при -1<=x<=1
а)./х/+ 2,8; Наибольшего нет (бесконечность). Наименьшее достигается при |x|=0, х=0, Ymin=2,8
б).1,2-/х/, Наименьшего нет (-бескон). Наибольшее достигается при |x|=0, х=0, Ymax=1,2.
в)./х+1/-5,4, Наибольшего нет (бескон). Наименьшее достигается при |x+1|=0, x= -1, Ymin = -5,4.
г).9-/2х-4/, Наименьшего нет(-бескон). Наибольшее достигается при
|2x-4|=0, x=2, Ymax = 9.
д)./х-1/+/x+1/=
| -2x , при x<-1
= | 2, при -1<=x<=1
| 2x, при x>1
Видим, что наибольшего нет(бескон). Наименьшее: Ymin = 2. при -1<=x<=1
В магазине было 30 красных и 8 синих пеналов. Продали 20 пеналов. Сколько пеналов осталось в магазине? Решение: 1)30+8=38(пеналов)-всего. 2)38-20=18(пеналов)-осталось. Выражение: (30+8)-20=18(пеналов)-осталось ответ: в магазине осталось 18 пеналов.