1. Найдем знаменатель геометрической прогрессии b₅=b₁*q⁴ b₃=b₁*q² (1) b₅/b₃=q² 1/9=q² q=1/3 или q=1/3 Из уравнения (1) найдем b₁ 9=b₁*(1/9) b₁=81 Теперь найдем сумму пяти членов прогрессии. S₅=b₁(q⁵-1)/(q-1) при q=1/3 S₅=81(1/243-1)/(1/3 -1)=81*(1-1/243)/(1-1/3)=81*242/243*3/2= 121 (Можно было посчитать впрямую без формулы: 81+27+9+3+1=121) При q=-1/3 или применяем формулу. или считаем впрямую. Члены прогрессии в этом случае: 81; -27; 9; -3; 1. 81-27+9-3+1=61. или S₅=81(-1/243-1)/(-1/3 -1)=81*(1+1/243)/(1+1/3)=81*244/243*3/4=61. ответ: 121 или 61.
(0;2]U[4;6)
Пошаговое объяснение:
ОДЗ:
{x > 0;
{6–x > 0 ⇒ x < 6
{(x4–12x3+36x2) > 0⇒ (x·(6–x))2 > 0 ⇒ x≠0; x≠6
ОДЗ: х∈(0;6)
при х∈(0;6):
log2(x4–12x3+36x2)=log2x2·(6–x)2=
log2(x·(6–x))2=2log2x·(6–x)=2log2x+2log2(6–x)
Неравенство принимает вид:
(2–log2x)·(log2(6–x)–2) ≥ 0
Применяем обобщенный метод интервалов
log2x=2 или log2(6–x)=2
x=4 или 6–х=4;х=2
При х=1
(2–log21)·(log2(6–1)–2)=2·(log25–log24) > 0
При х=3
(2–log23)·(log2(6–3)–2)=–(2–log23)2 < 0
При х=5
(2–log25)·(log2(6–5)–2)=(log24–log25)·(0–2) > 0
(0)__+__ [2]__–__[4]__+__ (6)