Если Вы предполагаете так называемую "идеальную" монетку, т.е. Вы заранее знаете, что и орёл, и решка выпадают с вероятностью ½, тогда сколько бы раз ни выпала решка, вероятность выпадения ни орла, ни решки не поменяется.
Если же это "неидеальная" монетка, и Вы, вообще говоря, не знаете, каковы для неё вероятности выпадения орла и решки, Вы можете сделать вывод, что решка выпадает чаще. Чем больше наблюдений, тем больше закон распределения для данной монеты будет склоняться в сторону выпадения решки.
Получаем каноническое уравнение прямой АВ:
Это же уравнение в общем виде:
-5х + 20 = -4у + 24,
-5х + 4у - 4 = 0,
5х - 4у + 4 = 0.
В виде уравнения с коэффициентом:
у = (5/4)х + 1.
Если графики касаются, то имеют общую точку .
Координаты точки касания удовлетворяют обоим уравнениям:
Приводим к общему знаменателю и приводим подобные:
4х² - 4 = 5х² + 4х.
Получаем квадратное уравнение:
х² + 4х + 4 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=4^2-4*1*4=16-4*4=16-16=0;
Дискриминант равен 0, уравнение имеет 1 корень:x=-4/(2*1)=-2.
Координата у равна:
у = (5/4)*(-2) + 1 = -2,5 + 1 = -1,5.
ответ: (-2; -1,5).