Сторона ав трикутника abc лежить у площині альфа. площина бета, яка паралельна площині альфа , перетинає сторони ас і вс у точках а1 і в1 відповідно. знайдіть довжину відрізка а1в1, якщо ав=12 см, св1: в1в = 2: 3
алгоритм исследования функции двух переменных на экстремум
функция z = f(x,y) имеет максимум в точке m0(x0; y0), если f(x0; y0) > f(x; y) для всех точек (x; y), достаточно близких к точке (x0; y0) и отличных от неё. функция z = f(x,y) имеет минимум в точке m0(x0; y0), если f(x0; y0) < f(x; y) для всех точек (x; y), достаточно близких к точке (x0; y0) и отличных от неё. максимум и минимум функции называются экстремумами функции.
исследование функции двух переменных на экстремум проводят по следующей схеме.
1. находят частные производные dz/dx и dz/dy.
2. решают систему уравнений:
и таким образом находят критические точки функции.
3. находят частные производные второго порядка:
4. вычисляют значения этих частных производных второго порядка в каждой из найденных в п.2 критических точках m(x0; y0).
5. делаю вывод о наличии экстремумов:
а) если ac – b2 > 0 и a < 0 , то в точке m имеется максимум;
б) если ac – b2 > 0 и a > 0 , то в точке m имеется минимум;
в) если ac – b2 < 0, то экстремума нет;
г) если ac – b2 = 0, то вопрос о наличии экстремума остается открытым;
пример №1. найти экстремумы функции f(x,y)=x3+xy2+x2+y2 и определить по критерию сильвестра их тип.
решение.
1. найдем первые частные производные.
2. решим систему уравнений.
3x2+2x+y2=0
2xy+2y=0
получим:
а) из первого уравнения выражаем x и подставляем во второе уравнение:
x = -1
y2+1=0
данная система уравнений не имеет решения.
б) из первого уравнения выражаем y и подставляем во второе уравнение:
или
или
откуда x1 = -2/3; x2 = 0; x3 = -2/3; x4 = 0
данные значения x подставляем в выражение для y. получаем: y1 = 0; y2 = 0; y3 = 0; y4 = 0
количество критических точек равно 2: m1(-2/3; 0), m2(0; 0)
3. найдем частные производные второго порядка.
4. вычислим значение этих частных производных второго порядка в критических точках m(x0; y0).
вычисляем значения для точки m1(-2/3; 0)
ac - b2 = -4/3 < 0, то экстремума нет.
вычисляем значения для точки m2(0; 0)
ac - b2 = 4 > 0 и a > 0 , то в точке m2(0; 0) имеется минимум z(0; 0) = 0
вывод: в точке m2(0; 0) имеется минимум z(0; 0) = 0
пример №2. исследовать функцию на экстремум классическим методом: z=8x2+2xy-5x+6.
2пусть количество орехов у девочек равно х,тогда согласно условию возможно два варианта девочки мальчики х 2х х х\2 тогда сумма орехов в паре будет равна или х+2х=3х или х+х\2=2х+х\3=1,5х полученные суммы делится на 3, а сумма любых чисел, делящихся на 3 должна делиться на 3, а 1000 на 3 не делится, следовательно ответ - нет. 5 общее количество полученных партнеров и партнерш получается 74. то есть девочки назвали 37 партнеров,и мальчики назвали 37 партнерш. значит получается,что кто-то из них (или мальчик,или девочка) не назвали число 5. иначе говоря, дети называли только числа делящиеся на три (3,6). но число 37 не делится на 3,значит все таки получается,что кто-то ошибся. 8 на 5 трехтонках можно увести груз за один раз. то есть - на каждой из 4х первых трехтонок можно увезти более 2х тонн камней. иначе говоря,первый 4 машины увезут примерно 8 тонн камней. останутся еще камни,общим весом меньше 2х тонн, и их то и увезет пятая машина. покажем, что четыре машины нам не хватит,то есть если бы с самого начала было 13 камней весом по 10\13 тонн каждый,то каждая трехтонка может увезти только три камня. значит четыре трехтонки могут увезти 12 камней из 13.значит нам нужно пять трехтонок ответ (5 машин)
ответ:
алгоритм исследования функции двух переменных на экстремум
функция z = f(x,y) имеет максимум в точке m0(x0; y0), если f(x0; y0) > f(x; y) для всех точек (x; y), достаточно близких к точке (x0; y0) и отличных от неё. функция z = f(x,y) имеет минимум в точке m0(x0; y0), если f(x0; y0) < f(x; y) для всех точек (x; y), достаточно близких к точке (x0; y0) и отличных от неё. максимум и минимум функции называются экстремумами функции.
исследование функции двух переменных на экстремум проводят по следующей схеме.
1. находят частные производные dz/dx и dz/dy.
2. решают систему уравнений:
и таким образом находят критические точки функции.
3. находят частные производные второго порядка:
4. вычисляют значения этих частных производных второго порядка в каждой из найденных в п.2 критических точках m(x0; y0).
5. делаю вывод о наличии экстремумов:
а) если ac – b2 > 0 и a < 0 , то в точке m имеется максимум;
б) если ac – b2 > 0 и a > 0 , то в точке m имеется минимум;
в) если ac – b2 < 0, то экстремума нет;
г) если ac – b2 = 0, то вопрос о наличии экстремума остается открытым;
пример №1. найти экстремумы функции f(x,y)=x3+xy2+x2+y2 и определить по критерию сильвестра их тип.
решение.
1. найдем первые частные производные.
2. решим систему уравнений.
3x2+2x+y2=0
2xy+2y=0
получим:
а) из первого уравнения выражаем x и подставляем во второе уравнение:
x = -1
y2+1=0
данная система уравнений не имеет решения.
б) из первого уравнения выражаем y и подставляем во второе уравнение:
или
или
откуда x1 = -2/3; x2 = 0; x3 = -2/3; x4 = 0
данные значения x подставляем в выражение для y. получаем: y1 = 0; y2 = 0; y3 = 0; y4 = 0
количество критических точек равно 2: m1(-2/3; 0), m2(0; 0)
3. найдем частные производные второго порядка.
4. вычислим значение этих частных производных второго порядка в критических точках m(x0; y0).
вычисляем значения для точки m1(-2/3; 0)
ac - b2 = -4/3 < 0, то экстремума нет.
вычисляем значения для точки m2(0; 0)
ac - b2 = 4 > 0 и a > 0 , то в точке m2(0; 0) имеется минимум z(0; 0) = 0
вывод: в точке m2(0; 0) имеется минимум z(0; 0) = 0
пример №2. исследовать функцию на экстремум классическим методом: z=8x2+2xy-5x+6.
пошаговое объяснение: