ответ: 98653
Пошаговое объяснение:
Не меньше трёх = больше двух.
Значит в числе 3, 4 или 5 цифр меньше 7 и столько же нечётных.
Наибольшее число, которое можно составить из цифр будет начинаться так:
9 8 * * *
Проверим, можно ли подобрать остальные цифры так, чтобы получилось нужное число:
Для начала отметим, что в числе пока что нет цифр меньше 7 и есть одно нечётное число.
Так как оставшиеся цифры должны быть меньше 7, то сама 7 не подходит.
Остались цифры от 0 до 6.
Выберем ещё 2 наибольшие нечётные цифры (от 0 до 6): 5 и 3.
Теперь в числе есть 3 нечётных числа. Осталось выбрать наибольшую из оставшихся претендентов (0, 1, 2, 4, 6) -- это цифра 6.
Итак, из цифр 9, 8, 5, 3, 6 собираем наибольшее число, для этого расставляем их в порядке убывания:
9 8 6 5 3 -- искомое число
Пошаговое объяснение:
y'' +2y' = 3ex(cos(x)+sin(x))
Решение уравнения будем искать в виде y = erx с калькулятора. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:
r2 +2 r + 0 = 0
D = 22 - 4 • 1 • 0 = 4
Корни характеристического уравнения:
r1 = 0
r2 = -2
Следовательно, фундаментальную систему решений составляют функции:
Общее решение однородного уравнения имеет вид:
Рассмотрим правую часть:
f(x) = 3•ex•(cos(x)+sin(x))
Поиск частного решения.
Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида:
R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) - некоторые полиномы
имеет частное решение
y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))
где k - кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) - полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).
Здесь P(x) = 0, Q(x) = 0, α = 1, β = 1.
Следовательно, число α + βi = 1 + 1i не является корнем характеристического уравнения .
Уравнение имеет частное решение вида:
y* = ex(Acos(x) + Bsin(x))
Вычисляем производные:
y' = ex((B-A)•sin(x)+(A+B)•cos(x))
y'' = 2•ex(B•cos(x)-A•sin(x))
которые подставляем в исходное дифференциальное уравнение:
y'' + 2y' = (2•ex(B•cos(x)-A•sin(x))) + 2(ex((B-A)•sin(x)+(A+B)•cos(x))) = 3•ex•(cos(x)+sin(x))
или
-4•A•ex•sin(x)+2•A•ex•cos(x)+2•B•ex•sin(x)+4•B•ex•cos(x) = 3•ex•(cos(x)+sin(x))
Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:
-4A + 2B = 3
2A + 4B = 3
Решая ее методом обратной матрицы, находим:
A = -3/10;B = 9/10;
Частное решение имеет вид:
y* = ex(-3/10cos(x) + 9/10sin(x))
Таким образом, общее решение дифференциального уравнения имеет вид:
1. 54 куб.дм 12 куб.см : 14 = 54012 куб.см : 14 = 3858 куб.см = 3 куб.дм. 858 куб.см
2. 5 км 633 м + 597 м = 5633 м + 597 м = = 6230 м = 6 км 230 м
3. 9 ц - 9 кг = 900 кг - 9 кг = 891 кг = 8 ц 91 кг
4. 84 кв.м. 25 кв.дм - 28 кв.м. 16 кв.дм = 8425 кв.дм - 2816 кв.дм = 5609 кв.дм = 56 кв. м 9 кв.дм.
5. 5 ч 25 мин - 35 мин = 325 мин - 35 мин = 290 мин = 4 ч 50 мин
6. 52 м 8 см - 7 м 92 см = 5208 см - 792 см = 4416 см = 44 м 16 см
По второй части :
(6 кг - 1 кг 714 г)*39 = (6000 г - 1714 г)*39 = 4286 * 39 = 167154 г = 167 кг 154 г
(51 ц 25 кг + 14 ц 35 кг):32 = (5125 кг + 1435 кг):32 = 6560 : 32 = 205 кг = 2 ц 5 кг
(5 лет 4 мес + 13 лет 5 мес):9 = (64 мес + 161 мес):9 = 225 : 9 = 25 мес = 2 г 1 мес