М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
pupsikira2
pupsikira2
23.04.2022 04:51 •  Математика

No 1. Решите уравнение:
а) (а+ 25) + 34 = 152,
б) 67 +( m – 24 ) = 235.

👇
Ответ:
Ksyufenka
Ksyufenka
23.04.2022

(a+25)+34=152

a+25+34=152

a=152-34-25

a=93

67+(m-24)=235

67+m-24=235

m=235-67+24

m=192

ГОТОВО

4,6(7 оценок)
Ответ:
qwwwq0
qwwwq0
23.04.2022

а)

(а+25)+34=152

а+25=152-34

а+25=118

а=118-25

а=93

(93+25)+34=152

152=152

б)

67+(m-24)=235

m-24=235-67

m-24=168

m=168+24

m=192

67+(192-24)=235

235=235

можешь отметить как лучший ответ мне очень нужно

4,8(66 оценок)
Открыть все ответы
Ответ:
kkarinanexK
kkarinanexK
23.04.2022

Имено́ванные чи́сла — действительные числа (на практике всегда заданные с конечной точностью), являющиеся значением какой-нибудь физической величины, и сопровождающиеся названием единицы измерения, например 2 кг; 3,4 м, 220 В, 1,75 А, 45°30′00′′.

Противопоставляются отвлечённым числам, то есть тем, которые не имеют единицы измерения.

По количеству входящих в числа различных единиц именованные числа делят на и составные именованное число — число, в которое входит единица только одного наименования, например, 3 кг.

Составное именованное число — число, в которое входят единицы различных наименований, например, 3 кг 300 г[1].

Именованные числа называют равными, если равны значения физической величины, выражаемые ими. Например, число 3 кг 325 г равно числу 3,325 кг[1].

Пошаговое объяснение:

4,4(13 оценок)
Ответ:
nataliyantonov
nataliyantonov
23.04.2022

Пошаговое объяснение:

а) Первый Пусть из некоторого города A нельзя попасть в некоторый город B по железной дороге. Рассмотрим множество M всех городов, в которые можно попасть из города A по железной дороге. Множество городов, не входящих в M, обозначим N. Множество N непусто, поскольку в нём содержится город B. Ясно, что из городов множества M нельзя попасть в города множества N по железной дороге.

 Докажем, что из каждого города в любой другой можно попасть авиарейсами.

 Если один из городов принадлежит M, а другой – множеству N, то между ними есть прямая авиалиния.

 Пусть два города принадлежат M. Тогда из первого города можно попасть авиарейсом в некоторый город множества N, а оттуда (также самолётом) – во второй город.

 Аналогично рассматривается случай, когда оба города принадлежат N.

 Второй См. г).

 б) См. в).

 в) Пусть для города X это не так: есть город A, в который из X нельзя долететь за два "хода", и город B, в который из X нельзя доехать на поезде за два "хода" (значит, X и B связаны авиалинией). Пусть A и B связаны авиалинией. Тогда в X из A в можно добраться по воздуху с пересадкой в B. Противоречие.

 Аналогично к противоречию приводит и предположение о том, что A и B связаны железной дорогой.

 г) Пусть из A в нельзя долететь за три "хода", а из C в D нельзя доехать на поезде за три "хода". Тогда A и B связаны железной дорогой, а C и D – авиалинией.

 Пусть A и C связаны железной дорогой. Тогда B и D связаны авиалинией (иначе был бы ж/д маршрут CABD), а A и D – железной дорогой (иначе есть авиамаршрут BDA). Противоречие: есть ж/д маршрут CAD.

 Аналогично к противоречию приводит и предположение о том, что A и C связаны авиалинией.

4,5(99 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ