9 чисел. Вот такие у них окончания, слева приписывайте последовательность 69234 до тех пор пока не наберется 2013 знаков:
...69234692346
...692346923468
...6923469234685
...69234692346851
...692346923468517
...692346923469
...6923469234692
...69234692346923
...692346923469234
a) Находим определитель по треугольной схеме:
∆ =
1 3 2 | 1 3
2 1 1 | 2 1
3 2 2 | 3 2 = 2 + 9 + 8 - 12 - 2 - 6 = -1.
По очереди заменяем столбец матрицы на столбец результатов B. Находим текущий определитель D полученной матрицы тоже по треугольной схеме.
D1 = 7 3 2
7 1 1
12 2 2 = -2.
D2 = 1 7 2
2 7 1
3 12 2 = 1.
D3 = 1 3 7
2 1 7
3 2 12 = -4.
x = ∆1 /∆ = -2/ -1 = 2 ,
y = ∆2 /∆ = 1 /-1 = -1 ,
z = ∆3 /∆ = -4/ -1 = 4.
Остальные задания решаются аналогично.
Насколько я понимаю получается 7 чисел