ответ:
пошаговое объяснение: шаг 1: находим координаты х точек перечечения графиков y=x^2+1 и y=-x+3.
x^2+1 = -x+3; x^2+x-2 = 0; x1 = -2; x2 = 1.
шаг 2: находим определенный интеграл функции y = -x+3 в пределах от -2 до 1.
первообразная этой функции будет y = -1/2*x^2 + 3x + с
подставляя пределы интегрирования получаем площадь под функцией s1 = -1/2 + 3 + 2 + 6 = 10,5.
шаг 3: находим определенный интеграл функции y = x^2+1 в пределах от -2 до 1.
первообразная этой функции будет y = 1/3*x^3 + x + с
подставляя пределы интегрирования получаем площадь под функцией s2 = 1/3 + 1 + 8/3 +2 = 6.
шаг 4: s = s1-s2; s = 10,5-6; s = 4,5.
(log²(2)x-2log(2)x)²+36log(2)x+45-18log²(2)x<0
(log²(2)x-2log(2)x)²-18(log²(2)x-2log(2)x)+45<0
log²(2)x-2log(2)x=a
a²-18a+45<0
a1+a2=18 U a1*a2=45⇒a1=3 U a2=15
3<log²(2)x-2log(2)x<15
log(2)x=b
3<b²-2b<15
{b²-2b>3⇒b²-2b-3>0
{b²-2b<15⇒b²-2b-15<0
b1+b2=2 U b1*b2=-3⇒b1=-1 U b2=3
b<-1 U b>3
b3+b4=2 U b3*b4=-15⇒b3=-3 U b4=5
-3<b<5
-3<b<-1 U 3<b<5
-3<b<-1⇒-3<log(2)x<-1⇒1/8<x<1/2
3<b<5⇒3<log(2)x<5⇒8<x<32
ответ x∈(1/8;1/2) U (8;32)