Пусть х-цифра разряда десятков, у - цифра разряда единиц
Тогда получаем:
"Сумма цифр двузначного числа равна 9" х+у=9
Исходное число 10х+у, число после перестановки цифр: 10у+х
Т.к. полученное число меньше исходного на 63, то получаем равенство:
10х+у-63=10у+х
Получаем систему уравнений:
х+у=9
10х+у-63=10у+х
Решаем ее, выразив в первом уравнении х через у, и подставив его значение во второе уравнение:
х=9-у
9х-9у-63=0
х=9-у
9(9-у)-9у-63=0
х=9-у
81-18у-63=0
х=9-у
81-18у-63=0
х=9-у
18у=18
х=9-у
у=1
х=8
у=1
ответ: Первоначальное число 81.
Пошаговое объяснение:
y-5/6=1/9+1/54+8/27
y - 5/6 = 6/54+1/54+16/54
y - 5/6 = 23/54
y = 23/54+5/6
y = 23/54+45/54
y = 68/54
y = 1 14/54
y = 1 7/27