В прямоугольном треугольнике с катетами 3 и 5 вписан квадрат,имеющий с треугольником общий прямой угол.Найти периметр квадрата. Решение.Обозначим наш треугольник как АВС причем АВ=3, ВС =5. Угол В-прямой=90 градусов.Впишем квадрат ДЕКВ где точка Д принадлежит АВ, Е принадлежит АС, К принадлежит СВ. Пусть длина стороны квадрата равна х, тогда надо найти P=4x.Рассмотрим треугольники АЕВ и СВЕ. В этих треугольниках ЕД и ЕК являются их высотами. Поэтому площади этих треугольников равны
Сумма площадей этих треугольников равна площади треугольника АВС Теперь можно найти х 8x=15x=15/8Найдем периметр квадратаP=4x=4*(15/8)=15/2=7,5ответ:7,5 мне поставил две 5
1/2 *24/24=24/48
2/3 *16/16=32/48
5/6*8/8=40/48
7/8 *6/6=42/48
5/12*4/4=20/48
9/16*3/3=27/48
5/24*2/2=10/48
Пошаговое объяснение: