
ответ:2•1:4:(6-3•3:8•1•1:3=3•8=24•3=72-6=66•3=198=1:4=4•2=8:198=22
Пошаговое объяснение:я проходил.Удачи
7
Пошаговое объяснение:
Каждый раз смотрим только на последние цифры
33^1 оканчиватся 3(3*1=3)
33^2=33^1*33 оканчивается 9(3*3=9)
33^3=33^2*33 оканчивается 7(9*3=27)
33^4=33^3*33 оканчивается 1(7*3=21)
33^5=33^4*33 оканчивается 3(1*3=3)
33^6=33^5=33 оканчивается 9(3*3=9
...
...
Очевидно, что степени будут повторяться каждые 4 умножения(окончаниями 33^1, 33^5, 33^9, 33^13, 33^(13+4n) ... будет цифра 3)
33^(1+4n) оканчивается на 3
33^(2+4n) оканчивается на 9
33^(3+4n) оканчивается на 7
33^(4n) оканчивается на 1
Где n-целое неотрицательные число.
Поделим 2015 на 4 с остатком:2015=503*4(ост. 3)
33^2015=33^(3+4*503) имеет такую же последнюю цифру, как и 33^3 равную 7
Это задача, как правило, - на нахождение наибольшего общего делителя чисел 58 и 64. По алгоритму Евклида НОД данных чисел равен двум, т.к.
НОД(58;64)=НОД(58;64-58)=НОД(58;6)=
НОД(58-6;6)=НОД(52;6)=НОД(52-6;6)=НОД(46;6)=
НОД(46-6;6)=НОД(40;6)=НОД(40-6;6)=НОД(34;6)=
=НОД(34-6;6)=НОД(28;6)=НОД(28-6;6)=НОД(22;6)=
НОД(22-6;6)=НОД(16;6)=НОД(16-6;6)=НОД(10;6)=
НОД(10-6;6)=НОД(4;6)=НОД(4;6-4)=
НОД(4;2)=НОД(4-2;2)=НОД(2;2)=2. Можно сделать два одинаковых подарка, в которых будет по 58/2=29 (шоколадок) и 64/2=32 /леденца./
В задаче надо было найти возможное количество подарков. Меньше НОД, я бы еще указал другие варианты, но в данной задаче, кроме двойки, числа 58 и 64 делятся еще только на единицу.
ответ 1 или 2.
и загрузи себе photomath)))