Все искомые пары чисел имеют равное число единиц (т.к. остаток заканчивается на 0).
Число десятков может быть соответственно 9 и 4, 8 и 3, 7 и 2, 6 и 1, т.е. 90 и 40, 91 и 41 и т.д.
Следовательно, таких пар будет 40.
Представим, что число состоит из цифр a и b. (a - десятков и b - единиц)
получаем систему уравнений:
a^2+ab = 52
b^2+ab = 117
выразим ab из первого уравнения: ab=52-a^2
подставляем во второе уравнение:
b^2+52-a^2 = 117
b^2-a^2 = 117-52
b^2-a^2 = 65
Поскольку а и b это цифры , составляющие двузначное число, то они целые положительные однозначные числа,
из последнего равенства понятно, что b^2 должно быть больше или равно 65, значит b=9 (т.к. квадрат всех предыдущих цифр меньше 65)
теперь находим a:
81-a^2=65
a^2=81-65
a^2=16
a=4
таким образом искомое число 49
40 пар двузначных чисел