из восьмёрки убери спичку так, чтоб получилось 9 и перенеси на ноль, чтоб получилось 8
Пошаговое объяснение:
6 см
Пошаговое объяснение:
По условию, трапеция вписана в окружность, значит она равнобедренная, т.е. CD=AB (это свойство трапеции).
Центр О окружности лежит на AD - большем основании трапеции, значит, сторона AD - диаметр трапеции ABCD, а отрезок AO является радиусом трапеции.
Найдём радиус окружности:
r = D/2 = AD/2 =12/2 = 6 см
AO= r = 6 см
Отрезок ОВ = 6 см, т.к. он также является радиусом окружности.
ΔАОВ - равнобедренный, т.к. АО=ОВ=r=6 см.
В равнобедренном треугольнике углы при основании равны, поэтому ∠ОАВ=∠ОВА.
По условию, ∠А=60°. ∠А=∠ОАВ, следовательно, ∠ОВА=60°.
Найдём ∠АОВ:
∠АОВ=180°-(∠ОАВ+∠ОВА)=180°-(60°+60°)=180°-120°=60°
Получается, что ΔАОВ - равносторонний.
Это означает, что АВ=ОА=ОВ=6 см
Т.к. трапеция равнобедренная, то CD=AB=6см
вес всех гирок равен 1+2+...+19=19*20:2=190 г.
вес первых 9 гирек равен 1+2+...+9=9*10:2=45
вес последних 9 гирек равен 190-45-10=135
так как 45+90=135,
то "легкие" гирки (весом от 1 до 9 г) -бронзовые
"тяжелые" гирки (весом от 11 до 19 г) - железные
вес золотой гирки 10 г
Рассмотрим некоторый рассадки членов жюри. Назовём члена жюри везучим, если он сидит на своём месте. Первым из невезучих (не считая Николая Николаевича) к столу должен был подойти тот, чьё место занято Николаем Николаевичем (другой невезучий сел бы на свое ещё свободное место, что противоречит его невезучести). Он занял место следующего (по часовой стрелке) невезучего члена жюри. Вторым из невезучих должен был подойти тот, чьё место занято первым невезучим (по той же причине), и т.д. Итак, каждый невезучий садится на следущее "невезучее" место за его собственным.
Таким образом рассадки однозначно задаётся разбиения жюри на везучих и невезучих.
Николай Николаевич и тот, чьё место он занял, в любом случае являются невезучими. Любой набор членов жюри, не содержащий этих двоих, может быть множеством везучих. Реализовать такой рассадки можно, например, так: вслед за Николаем Николаевичем входят все, кого мы выбрали везучими (в любом порядке), а затем все остальные в порядке их рассадки за столом по часовой стрелке. Поэтому количество рассадки равно количеству подмножеств множества из 10 человек, то есть 210 = 1024.
8 + 3 - 11 = 0 (см. фото)