График функции y=|x²+3x+2| представляет собой график функции график функции y=x²+3x+2, у которого часть параболы с отрицательными значениями "у" перевёрнуты в положительную часть графика.
Поэтому наибольшее число общих точек график данной функции может иметь с прямой, с параллельной оси абсцисс, это 4.
Точки на оси Ох находим, приравняв функцию нулю: x²+3x+2 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=3^2-4*1*2=9-4*2=9-8=1;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√1-3)/(2*1)=(1-3)/2=-2/2=-1; x₂=(-√1-3)/(2*1)=(-1-3)/2=-4/2=-2.
Радиус, проведенный к точке касательной, перпендикулярен касательной. Следовательно он перпендикулярен хорде, поскольку хорда параллельна касательной (по условию). Соединим концы хорды и центр окружности. Получим треугольник АВО. Он равнобедренный и в нем проведена высота ОМ, которая принадлежит радиусу ОК, проведенному к касательной. АМ=МВ, т.к. высота в равнобедренном треугольнике является и медианой.Найдем ОМ. Рассмотрим треугольник АМО. Он прямоугольный. Мы знаем гипотенузу - АО. Это радиус. И знаем АМ. Это половина хорды. Находим второй катет ОМ по теореме Пифагора. ОМ=√(65²-63²)=16. Следовательно МК=65-16=49
Поэтому наибольшее число общих точек график данной функции может иметь с прямой, с параллельной оси абсцисс, это 4.
Точки на оси Ох находим, приравняв функцию нулю:
x²+3x+2 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=3^2-4*1*2=9-4*2=9-8=1;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√1-3)/(2*1)=(1-3)/2=-2/2=-1; x₂=(-√1-3)/(2*1)=(-1-3)/2=-4/2=-2.
График дан в приложении.