М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
misi2
misi2
27.05.2021 20:44 •  Математика

с дз по математике: составить 2 задачи на применение свойств векторов по профессии;

👇
Ответ:
Сашаawalon
Сашаawalon
27.05.2021

При выяснении вопроса о применимости векторного метода к решению той или иной задачи, необходимо установить возможность выражения всех данных соотношений между известными и искомыми величинами на языке векторов. Если это можно сделать без больших затруднений, то есть смысл при решении такой задачи использовать векторы.

Решение геометрических задач с векторов протекает успешнее, если вы будете придерживаться общих правил поиска решения. Полезно использовать девять таких правил:

1. Начиная решать задачу, посмотрите, что дано и что требуется доказать; отделите условие задачи от ее заключения; запишите условие и заключение задачи через общепринятые обозначения.

2. Выясните все (по возможности) соотношения, из которых следует заключение задачи; запишите их в векторной форме.

3. Сопоставьте каждое из рассматриваемых соотношений с тем, что дано, и с рисунком и посмотрите, какое из них лучше выбрать для доказательства.

4. Из того, что дано, получите следствия, которые связаны (или могут быть связаны) с выбранным вами соотношением.

5. Выделяя на рисунке векторы, входящие в выбранное вами соотношение, постоянно задавайте себе вопрос: «Через какие векторы можно их выразить? » Для ответа на поставленный вопрос рассматривайте эти векторы во всех целесообразных (обнадеживающих) соотношениях с другими.

6. Если для выражения вектора через другие нужно сделать дополнительные построения на рисунке, сделайте их так, чтобы это выражение было наиболее простым.

7. Постоянно помните, что дано в условии задачи, и в случае затруднений проверьте, не упустили ли вы что-либо из условия.

8. Так как затруднения могут быть связаны также с тем, что вы не применили какую-либо задачу или теорему, то в случае затруднения постарайтесь мысленно перебрать известные вам теоремы и решенные задачи и подумать, нельзя ли воспользоваться какой-нибудь из них.

9. Если выбранное вами соотношение (по правилу 2) не удалось доказать, применив все правила 4-8, то выберите другое и снова выполняйте правила 4-8 уже относительно него.

Пошаговое объяснение:

I. Для овладения умением переходить от геометрического языка к векторному и обратно необходимо знать, как то или иное векторное соотношение выражается на геометрическом языке. Например:

а) Равенство = k (k –некоторое число) , означает, что прямые АВ и СД параллельны.

б) Равенства = m/n и = n/(m+n) + m/(m+n) , (m,n –некоторые числа, Q –произвольная точка плоскости) означают, что точка С делит некоторый отрезок АВ в отношении m к n, т. е. AC : CB = m : n. При этом точка Q может быть выбрана так, чтобы последнее равенство доказывалось наиболее просто (это равенство следует из теоремы о делении отрезка в данном отношении) .

в) Каждое из равенств = k1 , = k2 , = k3 , = p +q (где k1, k2, k3, p, q - некоторые числа, p+q=1, Q – произвольная точка плоскости) , a +b +g = 0 (a, b, g - некоторые числа, a+b+g = 0, Q -произвольная точка плоскости) означает принадлежность трех точек А, В, С одной прямой (два последних равенства следуют из теоремы о принадлежности трех точек одной прямой) .

г) . Равенство . = 0, где A ¹ B; C¹D, означает, что прямые АВ и СД перпендикулярны. (Указанное равенство следует из свойств скалярного произведения векторов.)

4,8(26 оценок)
Открыть все ответы
Ответ:

ответ: x∈(1;2).

Пошаговое объяснение:

Прежде всего заметим, что так как x находится под знаком логарифма, то x>0. Умножим обе части на положительное число x^[log_2(x)] и положим x^[log_2(x)]=t. После этого неравенство примет вид t²+2<3*t, или t²-3*t+2<0. Перепишем его в виде (t-1)*(t-2)<0 и решим методом интервалов. Если t<1, то (t-1)*(t-2)>0; если 1<t<2, то (t-1)*(t-2)<0; если t>2, то (t-1)*(t-2)>0. Отсюда 1<t<2 и мы приходим к системе неравенств:

x^[log_2(x)]>1

x^[log_2(x)]<2

Решим первое неравенство. Для этого возьмём логарифмы по основанию 2 от обеих частей этого неравенства и получим неравенство [log_2(x)]²<log_2(1), или [log_2(x)]²>0. Отсюда log_2(x)>0 и x>1, т.е. при x∈(1;∞). Рассмотрим теперь второе неравенство.  Возьмём логарифмы по основанию 2 от обеих частей это неравенства и получим неравенство [log_2(x)]²<log_2(2), или [log_2(x)]²<1. Это неравенство распадается на два таких:

log_2(x)<1

log_2(x)>-1.

Первое имеет решение x<2, т.е. x∈(-∞;2). Второе имеет решение x>1/2, т.е. x∈(1/2;∞). Но так как x>0, то отсюда следует, что x∈(0;2). Поэтому искомое решение таково: x∈(1;2).

4,7(66 оценок)
Ответ:
pomosh221314
pomosh221314
27.05.2021

370.

РΔАВС=17/20м

АВ=17м/50

ВС- на 9м/50 меньше АВ

АС=?

ВС=17/50-9/50=8/50=4/25

АС= Р-АВ-ВС=17/20-17/50-8/50=17/20-25/50=17/20-1/2=17/20-10/20=7/20/м/=35см

371

1- (1/3)ч

2- на (1/6)ч больше

3- на 7/12 меньше. чем на 1и 2 вместе.

? времени на чтение всей книги.

1)1/3+1/6=2/6+1/6=3/6=1/2/ч/- на второй рассказ ушло времени.

2) (1/3+1/2)-7/12=5/6-7/12=10/12-6/12=4/12=1/3/ч/ -на 3 рассказ ушло времени.

3)1/3 +1/2 +1/3=2/3+1/2=4/6 +3/6=7/6= 1 1/6/ч/ или  это 1час и 10 минут ушло времени на три рассказа.

372

Оля затратила

4/5-(5/12+1/3)=4/5-(5/12+4/12)=4/5-9/12=4/5-3/4=(16-15)/20=1/20 /часа/, или это 3 минуты.

4,4(10 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ