М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Стариат
Стариат
24.12.2020 18:30 •  Математика

Игральную кость подбрасывают три раза подряд. Случайная величина Х - количество выпадений цифры 6. Найти вероятность того, что она примет значение, не равное 0

👇
Ответ:
Ilvina124krs
Ilvina124krs
24.12.2020

p4=(1/6)·(1/6)·(1/6)=1/216

Решение

Вероятность выпадения шестерки при одном броании кости равна (1/6).

Вероятность невыпадения шестерки равна

1–(1/6)=5/6

Значения случайной величины:

х1=0

Вероятность того, что и на первой кости и на второй и третьей шестерка не выпала равна:

p1=(5/6)·(5/6)·(5/6)=125/216

x2=1

Вероятность того, что или первой или на второй или третьей выпала шестерка равна:

p2=(1/6)·(5/6)·(5/6)+(5/6)·(1/6)·(5/6)+(5/6)·(5/6)·(1/6)=

=75/216

x3=2

Вероятность того что или на первой и второй или на второй и третьей или на первой и третьей кости выпала шестерка равна:

p3=(1/6)·(1/6)·(5/6)+(5/6)·(1/6)·(1/6)+(1/6)·(5/6)·(1/6)=

=15/216

x4=3

Вероятность того, что и на первой кости и на второй кости и на третьей кости выпала шестерка равна:

p4=(1/6)·(1/6)·(1/6)=1/216

Проверка, что все вычислено верно:

p1+p2+p3+p4=1

4,7(28 оценок)
Открыть все ответы
Ответ:
Дпашник
Дпашник
24.12.2020
Нашел решение!
√(7sin x) + √(7cos x) = √17
Возводим в квадрат
7sin x + 7cos x + 2√(7sin x*7cos x) = 17
14√(sin x*cos x) = 17 - 7sin x - 7cos x

Снова возводим в квадрат
196*sin x*cos x =
= 289 + 49sin^2 x + 49cos^2 x - 238sin x - 238cos x + 98sin x*cos x
Упрощаем
(196 - 98)*sin x*cos x = 289 + 49 - 238sin x - 238cos x
98*sin x*cos x + 238sin x + 238cos x = 338
49 + 2*49*sin x*cos x + 238(sin x + cos x) = 338 + 49

Выделяем полный квадрат
49*(sin^2 x + cos^2 x + 2sin x*cos x) + 238(sin x + cos x) = 387
49(sin x + cos x)^2 + 238(sin x + cos x) - 387 = 0
Замена sin x + cos x = y.
49y^2 + 238y - 387 = 0

Свели к квадратному уравнению
D/4 = 119^2 + 49*387 = 33124 = 182^2
y1 = (-119 - 182)/49 = -301/49 = -43/7 < -6
y2 = (-119 + 182)/49 = 63/49 = 9/7

Обратная замена
y = sin x + cos x = √2*sin(pi/4 + x) ∈ (-√2; √2) при любом x.
1) √2*sin(pi/4 + x) = -43/7 - решений нет
2) √2*sin(pi/4 + x) = 9/7
sin(pi/4 + x) = 9/(7√2) = 9√2/14

pi/4 + x1 = arcsin(9√2/14) + 2pi*k
x1 = arcsin(9√2/14) - pi/4 + 2pi*k

pi/4 + x2 = pi - arcsin(9√2/14) + 2pi*k
x2 = 3pi/4 - arcsin(9√2/14) + 2pi*k
4,4(20 оценок)
Ответ:
МарысяДэн
МарысяДэн
24.12.2020
1) 6х-8=-5х-1,6                                                                                                 6х+5х=8-1,6                                                                                               11х=6,4                                                                                                          х=6,4:11                                                                                                          х=6 4/10:11                                                                                                      х=6 2/5:11                                                                                                       х=32/5*1/11                                                                                                      х=32/55.                                                 
4,4(54 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ