1. Дано множество чисел R: R= {9; -1,7; 2,3; 0; 3,7; -7; 4 7/8) Выделите из множества R подмножества: Е- натуральных чисел, м - целых чисел и W - рациональных
чисел. Постройте диаграмму Эйлера Венна для множеств E, M и W и отметьте на
ней элементы множества R.
ЭТО СОР)))
a = b-5
НАЙТИ
a=? b=?
РЕШЕНИЕ
Приводим к общему знаменателю (и забываем о нём).
3*(a-3)*b = 3*a*(b+4) - b*(b+4)
3*a*b - 9*b = 3*a*b + 12*a - b² - 4*b
Упрощаем и делаем подстановку: a = b-5
b² - 5*b - 12*(b-5) = 0
Упростим
b² - 17*b + 60 = 0
Решаем квадратное уравнение.
Дискриминант - D = 49, √49 = 7 и находим корни - b₁ = 12, b₂ = 5
b = 12 и a = 12-5 = 7
ОТВЕТ Дробь 7/12
Проверим второй корень уравнения:
b = 5 и а = 0 или дробью a/b = 0.
Получили на 1/3 меньше исходного числа.
По условию задачи тоже почти подходит, но 0 - не дробь - не подходит.