Пошаговое объяснение:
е ) 1/1*3 + 1/3*5 + ... + 1/(2n-1)(2n+1) = n/(2n+1) ; ( 1 )
1) при n = 1 : 1/1*3 = 1/(2*1 +1) - правильна рівність
2) при n = k : 1/1*3 + 1/3*5 + ... + 1/(2k-1)(2k+1) = k/(2k+1) ; - правильно (при-
пущення ) , перевірка правильності формули при n = k + 1 :
1/1*3 + 1/3*5 + ... + 1/(2k-1)(2k+1) + 1/(2k+1)(2k+3) = k/(2k+1) + 1/(2k+1)(2k+3) =
= (2k²+ 3k + 1)/(2k+1)(2k+3) = (2k+1)(k + 1)/ (2k+1)(2k+3) = (k + 1)/(2k + 3) -
рівність також справджується . Тому на основі Принципу Математичної
індукції рівність ( 1 ) справедлива при будб-яких значеннях nЄN .
Общий множитель (-1,03) вынесем за скобки:
= (-1,03) · (5,87 - 15,87) = (-1,03) · (-10) = 10,3.
Пояснения:
(-) · (-) = (+)
ответ: 10,3.